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We show that the large-eddy motions in turbulent fluid flow obey a modified 
hydrodynamic equation with a stochastic turbulent stress whose distribution is 
a causal functional of the large-scale velocity field itself. We do so by means of 
an exact procedure of "statistical filtering" of the Navier-Stokes equations, 
which formally solves the closure problem, and we discuss the relation of our 
analysis with the "decimation theory" of Kraichnan. We show that the statistical 
filtering procedure can be formulated using field-theoretic path-integral methods 
within the Martin-Siggia-Rose (MSR) formalism for classical statistical 
dynamics. We also establish within the MSR formalism a "least-effective-action 
principle" for mean turbulent velocity profiles, which generalizes Onsager's 
principle of least dissipation. This minimum principle is a consequence of a 
simple realizability inequality and therefore holds also in any realizable closure. 
Symanzik's theorem in field theory--which characterizes the static effective 
action as the minimum expected value of the quantum Hamiltonian over all 
state vectors with prescribed expectations of fields--is extended to MSR theory 
with non-Hermitian Hamiltonian. This allows stationary mean velocity profiles 
and other turbulence statistics to be calculated variationally by a Rayleigh-Ritz 
procedure. Finally, we develop approximations of the exact Langevin equations 
for large eddies, e.g., a random-coupling DIA model, which yield new stochastic 
LES models. These are compared with stochastic subgrid modeling schemes 
proposed by Rose, Chasnov, Leith, and others, and various applications are 
discussed. 

KEY WORDS:  Navier-Stokes; turbulence noise; LES; generalized Langevin 
equations; variational principles. 

1. I N T R O D U C T I O N  

The analogy of turbulent motion with the hydrodynamics of molecular 
fluids has played a central role in attempts to understand and to model the 
dynamics of large, turbulent eddies. In ordinary Newtonian hydrodynamics, 
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at least in the low-Mach-number, incompressible regime, the local fluid 
velocity obeys an equation of the form 

O,v + V. (vv + ~s) = -Vp (1.1) 

in which p is the (kinematic) pressure, required to enforce the incom- 
pressibility constraint V. v = 0, and z" is the viscous stress tensor 

e = -Vo[(Vv) + (Vv) v] (1.2) 

The so-called molecular viscosity v o represents the residual, dissipative effects 
of the "graininess" of matter at the fluid level. Likewise, in the case of 
turbulent mot!on, the "large-scale velocity" v~, which may be conveniently 
defined by a smooth filtering 

~t(r) - I  dad G t ( r -  r') v(r') 1.3) 

obeys an equation of the form 

0 ,~ /+  V" (~/~/+ */) = --VP/ 1.4) 

in which fit is the filtered pressure field and ~ is a tensor representing the 
turbulent stress of the eliminated small-scale eddies </. If the Reynolds 
number of the fluid is high and l is chosen in the long "inertial range" of 
scales, then the molecular viscosity is believed to play a negligible role in 
the evolution of the large eddies >/. Instead the primary effect is believed 
to be due to the smaller scale turbulence, which is modeled, by analogy 
with the molecular fluids, as 

z/--- -v~[(VV/) + ( W y ]  (1.5) 

in which v t is now a so-called eddy viscosity. This representation of the 
effect of small scales as a simple damping is, however, not nearly as 
accurate as in the molecular case, where there is generally a large separa- 
tion of scales between the atomic and fluid degrees of freedom. In contrast, 
in the case of turbulence, there is no such scale separation and the eddy- 
viscosity representation is flawed, leading to a variety of viscoelastic, non- 
linear effectsJ l.Z~ 

Here we shall be concerned with another oversimplification of the 
eddy-viscosity representation. In fact, even in the case of molecular fluids 
there is an additional influence of the microscopic degrees of freedom, 
which is a stochastic effect due to the chaotic molecular motions. Because 
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of such effects, Landau and Lifshitz 13~ proposed in 1959 that there should 
be also in the Navier-Stokes fluid equation (1) a random stress xr, as 

0,v + V. (vv + x~ + x") = -Vp  (1.6) 

Since the molecular degrees of the fluid are, by mixing properties of the 
dynamics, locally in a state of thermal equilibrium, the random stress field 
Tr(r, t) should have statistics which are those of the universal Gibbs states. 
Motivated by such considerations, Landau and Lifshitz hypothesized that 
xr for the fluid at temperature T should be a Gaussian random field with 
zero mean and covariance 

<r,~.(x, t) r~,,(y, s)> = (2kBTvo/p)(61k6j,+6i,6jk) 6d(x--y) 6(t--s) (1.7) 

where the delta functions arise from the fast decay of correlations in the 
Gibbs states. This "fluctuation-dissipation relation" (FDR) relating the 
strength of the noisy stresses and the molecular viscosity makes it clear that 
the two contributions to the momentum flux have the same origin in the 
microscopic degrees of freedom. Generally speaking, the molecular noise 
gives a negligible effect on the gross fluid motions, but it does have observ- 
able consequences for fluctuation behavior seen, for example, in light- 
scattering experiments. 

By the same analogy with molecular fluids which motivated the eddy- 
viscosity model (1.5), one therefore should expect that the stress tensor in 
the equation of motion of large turbulent eddies will consist of both a 
systematic (or deterministic) and a fluctuating part: 

(1.8) 

In fact, an exact formula for the turbulent stress can be deduced from the 
filtering procedure, as 

*t = (vv) / -  ~l~J (1.9) 

This representation of the stress is as a function of the full velocity field v, 
that is, of the small-scale (or subgrid) component v~, defined as 

v~(r)  -= v ( r )  - ~ / ( r )  ( 1 . 1 0 )  

as well as of the large-scale velocity ~ itself. Therefore, one should expect 
that, when only the large-scale field ~t is specified, the stress zt will not be 
fully determined, but that, in fact, a distribution of values will occur with 
some given frequency depending upon the precise values of the small-scale 
velocity v~, Unlike the case of laminar fluids, where molecular noise 
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represents only a small perturbation to deterministic motion, in turbulent 
flow the fluctuations are large and the random component of the stress, or 
eddy noise, is likely to be fully as significant as the systematic part. On the 
other hand, if the statistics of the small-scale component v~ is universal, as 
usually believed, then the distribution law of the fluctuating stress ought to 
be fixed by the Kolmogorov "universal equilibrium state" when I is chosen 
in the inertial interval. Nothing so simple as the FDR in Eq. (1.7) fixing the 
molecular noise can be expected, again due to lack of scale separation, but 
it ought to be possible to construct a generally applicable model of the 
statistical distribution. 

The recognition of the probable importance of "eddy noise" in fully 
developed turbulence does not originate with this work, but was pointed 
out already in the first cited paper of Kraichnan ~1) and in the contem- 
porary work of Rose. (4~ More recently, a number of stochastic large-eddy 
models have been proposed to account for such effectsJ 5-s~ Our purpose 
here is to set up a general formalism for statisticalfiltering of the Navier- 
Stokes turbulence dynamics, leading to exact "fluctuating hydrodynamic 
equations" for the large eddies of the form proposed. We should point out 
that in the present method no finite "stirring forces" are added, as in the 
so-called "RNG" method of Yakhot and Orszag. 19) Instead, the "eddy 
noise" we study must be dynamically generated by the chaotic fluid motion 
of the small-scale eddies. In fact, we believe that a careful analysis of the 
existence and properties of this turbulent noise must be made before any 
modeling is attempted, for otherwise serious confusions in the physics will 
result. This work develops the framework for such an analysis. Our proce- 
dure is most similar to that used by Rose, (4~ but no iteration schemes 
motivated by renormalization group ideas will be employed (since we have 
not found them to present any significant advantages). Although our 
stochastic equations are exact results for the Navier-Stokes dynamics, they 
are r~ther formal and not directly useful for practical modeling. However, 
subsequent approximations based upon standard ideas (random-coupling 
model, multiple-scale expansion and/or Markovianization, functional 
reversion techniques, etc.) yield simplified forms which are suitable for 
numerical solution by computer. 

The precise contents of this work are as follows: in Section 2 we set up 
the "statistical filtering" scheme leading to stochastic equations for the 
large turbulent eddies and discuss its statistical-dynamical foundations. We 
compare there as well the relations of this method with Kraichnan's 
"decimation theory. ''11~ His theory leads also to generalized Langevin 
equations by a procedure of elimination or "weeding" of modes that are 
then modeled by Langevin forces subject to realizability constraints. 
Afterward we develop from first principles the Martin-Siggia-Rose (MSR) 
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field theory formulation of classical statistical dynamics, ~1~ emphasizing 
the nonperturbative and exact basis of the approach. The MSR formalism 
is shown to yield an elegant and efficient formulation of the statistical filter- 
ing scheme. In Section 3 we discuss a rather different--but closely related-- 
subject of variational principles for mean velocity profiles based upon the 
MSR effective action. It is shown that a principle of "least effective action" 
characterizes the mean velocity as a consequence of a simple realizability 
inequality and thereby generalizes the famous least-dissipation principle of 
Onsager 1~2~ for most probable states in nonequilibrium thermodynamics. 
The least-action principle is made the basis to calculate mean turbulent 
profiles and other turbulence statistics by variational strategies rather than 
by the solution of effective equations of motion. Finally, in Section 4 we 
briefy describe approximations of the exact large-eddy equations, more 
practical for LES, and we compare these models with those introduced 
previously.15 81 We also briefly discuss applications of such equations to the 
problem of atmospheric predictability, where eddy noise can play a signifi- 
cant role in LES, and to simulation of inhomogeneous turbulence in a 
complex geometry. 

2. THE STATISTICAL FILTERING METHOD AND 
MSR FIELD THEORY 

2.1. Formulation of Statistical Filtering 

Let us first recall the usual (deterministic) filtering method, of which 
an interesting recent account can be found in the paper of Germano ~ 14~ (see 
also our paper ct3~). It was already briefly reviewed in the Introduction. The 
basic idea of the method is to convolute the turbulent velocity field with a 
smooth "filter function" G/( r )=  l-aG(r/l), as in Eq. (1.3) there, in order to 
define a "large-scale" velocity ~t. It is then possible to derive an infinite 
hierarchy of equations for "generalized central moments," of which the tur- 
bulent stress x~ in Eq. (1.9) is the second-order example. The lowest equa- 
tion in the hierarchy is precisely Eq. (1.4) in the Introduction. If the 
hierarchy is truncated at this order, then one encounters the "closure 
problem" that x/ is not a functional of ~ alone, but also of v~, and a 
similar problem occurs at every higher order truncation of the hierarchy as 
well. In the current large-eddy simulation (LES) literature, second-order 
modeling is not attempted and only the lowest equation in the hierarchy is 
retained. Hence a model representation of z~ must be sought as a (causal) 
functional of ~/in order to obtain an autonomous equation for this field. 
We shall show that a "stochastic filtering" method solves the closure 
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problem in principle (but not in practice) by yielding an exact representa- 
tion of zt as 

(2.1) 

in which ~;[~1] is a "systematic stress," some causal functional of ~z, and 
T)'[v~] is a Langevin force, or "random stress," whose distribution given the 
past history of ~ is specified. We shall refer to this exact Langevin dynami- 
cal equation as the "stochastic large-eddy equation" (SLE). Although the 
functional ~'~[vt] and the distribution of T~[~/] are calculable in principle 
from formulas given below, in practice the exact expressions cannot be 
evaluated and approximation schemes must be employed. This is the sub- 
ject of Section 4. 

Just as for the deterministic filtering procedure, a rather wide class of 
choices for filter function G may be made. The main requirement is that the 
Fourier transform G(k) must decay sufficiently rapidly as k ~ +co, so that 
the convolution reallys represents an "elimination" of high-wavenumber 
modes. The most common choices are the Gaussian filter, usually defined 
in the LES literature as 

f 6"~ '1/2 Ix[ 2] 
G(x) = k ~ ) e x p [  6 (2.2) 

the tophat filter 

i if max Ixil < 1/2 
G(x) = i (2.3) 

otherwise 

and the sharp Fourier cutoff filter, which is most easily defined by its 
Fourier transform, as 

10 if max Ikil <zr 
d(k) = ; (2.4) 

otherwise 

In physical space the latter gives 

G(x) = 2  a ai._[ sin nxi (2.5) 
i =  I -"~" i 

However, as discussed at length in ref. 13, the sharp Fourier filter gives rise 
to pathological features in the deterministic method and these can be seen 
to appear as well in the stochastic formulation. Therefore, we will always 
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consider a "graded" filter obeying the modest condition (31) in ref. 13, 
which allows us to avoid the bad features of the sharp Fourier cutoff. 

The first steps in the "statistical filtering" method are the same as 
those in the usual deterministic scheme. The "large-scale (LS) velocity" 

~t(r) = (G/* v)(r) (2.6) 

and "small-scale (SS) velocity" 

v'/(r) = (HI * v)(r) (2.7) 

are introduced by convolution with low-pass filter G~ and high-pass filter 
H / satisfying 

0(k) + B(k) = 1 (2.8) 

The latter guarantees that v = ~ + v ~ .  If the filters are applied to the 
dynamical equations themselves, then there result coupled equations 

0,~/+ V" (~/~t + %) = - V 5  / + Vo A~/ (2.9) 

which we call the "large-eddy equation" (LE), and 

a,v~ + V �9 (~v~ + v ~ / +  v~v~- %) = -Vp~ + Vo Av~ (2.10) 

which we call the "small-eddy equation" (SE). Here zl is the "turbulent 
stress tensor," which is given by an explicit quadratic function of the total 
velocity, ~/= T/(v, v), 

T/(v, v) = (vv)/-  ft~/ (2.11 ) 

A useful decomposition of this function was made by Germano I ~51 accord- 
ing to the following straightforward procedure. One substitutes v = ~ + v; 
into T~ to obtain 

where 

Tt(v,v) = Lt(v,v) + Ct(v, v) + R/(v, v) 

L/(v, v) = T/(vt, v/) 

is the so-called Leonard stress, 

(2.12) 

(2.13) 

C/(v, v) = T/(~/, v~) + Tt(v~, v/) (2.14) 
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is the cross stress, and 

RAv, v) = TAv ~ , v~) (2.15) 

is denoted the Reynolds stress. Note this is a modification of the traditional 
decomposition of Leonard/161 It is clear that the LE and SE are coupled 
equations for the fields ~ and v~. 

The fundamental new step in "statistical filtering" is to add to the SE 
a weak random force f'l: 

O,v~ + V �9 (~/v~ + v~ ~t+ v~ v~-- ~t) = -Vp~ + VoAV~ + f  ~ (2.16) 

where f~ has zero mean and spectral support at wavenumbers greater than 
2rc/I. For convenience, we choose f~ Gaussian. A possible choice of the 

covariance is 

(f~(rt)  f~(r't')> = 2eoHt(r--  r') 6(t -- t') (2.17) 

The parameter e 0, when multiplied by the density p of the fluid, has units 
of energy per time. The role of this force is simply to add some random 
perturbations to the otherwise deterministic SE and thus peo should be 
very small compared to the total energy transfer per time to the small-scale 
motions. In fact, eo will momentarily be taken to zero. First, we formally 
solve the SE part of the dynamics with the large-scale velocity f ield con- 
sideredfixed. 2 The solution may be written as 

v~(rt)=V~[rt ;  vl, f~] (2.18) 

in which V'[r,  t; ~ ,  f~ ] is a causal functional of time histories of vl and f~, 
i.e., a functional depending only upon their values for times < t. It is clear 
how to construct such a functional approximately using a numerical 
integration routine on a spacetime grid. This solution is now formally 
introduced back into LE by substituting there 

*t= T/(~l+ V~, ~t+ V~) (2.19) 

As a result v~ is formally eliminated from that equation, which is closed in 
terms of the large-scale velocity ~ ,  along with the random force f~ acting 
at small scales. We therefore refer to this as the "closed large-eddy equa- 
tion." It is clear that the ~t obtained by filtering the solution of the full 
equation (with an appropriate random force) must also be a solution of the 
"closed LE." The latter inherits important properties from the original 

-' This is similar to Kraiclman's "clamping method" in Section 8 of ref. 10. 
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Navier-Stokes dynamics, such as energy conservation, which can be stated 
as the constancy of 

E(t)=�89 ]) (2.20) 

for f~ ~ 0 and Vo ~ 0, that is, in the inviscid, unforced limit. 
The next step is to take the limit eo--' 0 in the closed equation. We 

conjecture that in this limit the stress ~z will not become deterministic, but 
that, instead, it will remain a random functional of vt .3 This may naturally 
be called the stochastic large-eddy hypothesis. It is motivated by the known 
chaotic behavior of the Navier-Stokes dynamics, which should enhance the 
tiny random accelerations in the small scales to the degree that their effects 
do not vanish as their amplitude is taken to zero. If  / is chosen to lie within 
the inertial interval in a turbulent flow, then the statistics of ~ ought to be 
determined by the "universal equilibrium state" postulated by Kolmogorov 
for the small scales of a turbulent flow. We refer to the closed equation in 
that limit as the stochastic large-eddy equation (SLE) and we write it out 
here explicitly, 

8, v /+  V. (rr / + $/[ v] ) = -V/~I + Vo A v/ (2.21) 

where, as the notation indicates, the stress xz is now a functional of ~t, but 
a random one depending upon the realization of the noise. The random 
force f~ is simply used as a mechanism to select the correct small-scale 
statistics in the limit as eo--, 0. Such a weak-noise limit has been exploited 
in dynamical systems theory to select the "physical" stationary measure. 
The characterization of the "physical measure" as the stochastically stable 
one is known in many cases to agree with other reasonable character- 
izations based upon "smoothness" properties, when the dynamics has 
sufficiently strong ergodic properties: see the article of Ruelle ~17~ and 
Section IV.H of the review of Eckmann and Ruelle. ~8~ The previous 
hypothesis extends this idea to evolving states in which the small-scale 
modes are presumed, because of their faster dynamics, to achieve a "local 
equilibrium" relative to the instantaneous value of the large-scale modes. 
Because there is no sharp separation of space and time scales in fluid tur- 
bulence, one can only hope for a universal law of the fluctuating turbulent 
stress ~ if the'filtering length 1 is taken well within the inertial interval. 

F rom a more physical perspective, one can consider the random force 
to represent the molecular noise (1.7). Just as the molecular viscosity is 
believed to play no direct role in the dynamics of the large-scale turbulence, 

3 The limit here must be considered in a "weak" sense, i.e., for distributions on histories in 
path space. 
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so that the limit Vo--* 0 is well defined, likewise the molecular noise is 
believed to play no essential role in that limit except to select the correct 
measure. This idea was proposed some time ago by Ruelle. ~19~ In the 
language of field theory, the bare, molecular noise will be replaced by a 
"renormalized" eddy noise. This is due to the same physics by means of 
which molecular viscosity is replaced by an effective or "renormalized" 
eddy viscosity. The field-theoretic point of view will be exploited later to 
come up with approximation schemes and calculational methods for 
"statistical filtering." 

Stochastic descriptions similar to the SLE have been postulated by 
Hohenberg and Shraiman ~2~ in the context of general spatiotemporally 
chaotic systems and, specifically, for the Kuramoto-Sivashinsky equation. 
In the latter example there is an important conjecture of Yakhot t2~ that 
the chaotic behavior generated by small-scale instabilities will produce an 
"effective dynamics" of the large scales which is just the noisy Burgers 
equation. See also refs. 22 and 23. Our method generalizes and systematizes 
this earlier work, which was based upon weak-coupling perturbation 
expansions (without a small parameter!). As we shall see shortly, the 
"stochastic filtering" we have formulated nonperturbatively may also be 
carried out in weak-coupling expansions and then contains the earlier 
results. In fact, even for weak coupling our systematic technique obtains 
terms missed in the earlier work. 

The ideas proposed here have also some similarities with the "decima- 
tion theory" of Kraichnan, ~~ but they are really essentially distinct. 
Kraichnan proposed a general strategy for economical computation of 
many-mode systems by a procedure in which modes that are redundant 
due to underlying statistical syn~,netries are eliminated and replaced by 
suitable Langevin forces. The latter are constructed to enforce certain 
statistical constraints imposed by the exact dynamics. In this way efficient 
numerical approximations might be obtained and, by adding more and 
more constraints from the true dynamics, convergence of the approxima- 
tions to the true values might even be found. The two methods have in 
common the elimination of modes with "generalized Langevin equations" 
as the output. However, the "statistical filtering" we have formulated is 
exact and without any approximation whatsoever. Of course, the output 
SLE are, at this stage, completely formal and useless as a tool for numeri- 
cal computations. Approximations must be developed for any practical 
application. Nevertheless, the idea is not at its basis an attempt to develop 
statistical approximations, as is decimation, but is rather an attempt to 
characterize a physical statistical law. This is seen most clearly by compar- 
ing the two procedures for "chaotic" vs. "integrable" systems. Decimation 
theory might be successfully applied to both cases, yielding generalized 
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Langevin models as statistical approximations of the true dynamics. In fact, 
Kraichnan's first example of his decimation method It~ was for the three- 
mode dynamical model 

O,x=A,.yz, O,y=Ayxz, O,z=A:xy (2.22) 

with A,. + A,, + A: = 0. This dynamics has two quadratic integrals and is 
thus integrable by quadratures in terms of elliptic functions, as discussed 
long ago by Lorenz. Iz~ On the contrary, if the "stochastic filtering" were 
applied to an integrable system, such as the above three-mode model or 
Burgers' equation, then the SLE for the explicit modes would degenerate, 
or become deterministic, in the vanishing noise limit eo--, 0. The chaotic 
properties of the dynamics are necessary to create a true statistical law as 
described by the SLE equations. 

After these somewhat philosophical remarks, we return to the formal 
development. It is useful to separate the turbulent stress ~ into a 

" and a "random" part T / , "systematic" part ~/ " 

T/Ex; v/] = ~Ex;  v/] + r~Ex; v/] (2.23) 

[We represent here the space-time point as x = (r, t).] Any such division is 
essentially arbitrary and can be made according to various schemes. The 
one we have found most convenient is as follows: consider the functional 
V~[x; v/, f~] obtained by solving the SE for fixed past histories of ~z and 
f~. Substituted into the expression for Tz, this can then be averaged over 
the ensemble of random forces f~ treating ~ as a determhTistic quantity (or, 
equivalently, as an independent random variable). Denoting this average as 
(. 1~/),4 we then set 

~ ' [x ;  v/] = ( T / [ x ;  v/," ] Iv / )  (2.26) 

Note that for any functional F of the large-scale velocity alone 

(F[~/]  Girt, f~] [vt) =F[vt](G[vt,  f~] [vl) (2.24) 

Hence, the average ( .  I vt) has the appearance of a "conditional average" with large-scale 
velocity fixed, as its notation also suggests. However, this is not true and rather misleading. 
The sohttion vt of the SLE for a prescribed past history of random forces f~ will develop a 
functional dependence upon them, so that 

(F[vt ]  GEvt, f j ] )  #F[vt](GE~t, f ' t])  (2.25) 

where ( . )  denotes the ordinary average over the ensemble of forces fj. It would be possible 
to consider a true conditional average over f~ with the sohttions vt fixed, but such a condition- 
ing would change the statistics of the forces f~ from their a priori Gaussian statistics prescribed 
by Eq. (2.17). Therefore, the property (2.24) is really a consequence just of the definition of 
the linear operation ( .  I~t) applied to arbitrary functionals F[~t, f~] of the variables ~t and 
f~. Its usefulness will appear in the context of the MSR formalism developed later. 
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which no longer depends upon f'l, and 

3)" [x; vt, f~] = T/ [x ;  v/, f't] - - r ' [ x ;  vii (2.27) 

Note also that the "conditional mean" of the SS field, 

v'[x; ~] -- ( V'[x; V] IV) (2.28) 

will not vanish in general, since the past history of the LS field will set up 
an SS flow. Therefore, it is natural to separate this mean contribution from 
the SS field, by making the definition 

W'[-x; v] -V ' [x ;  v] -v ' [x ;  ~] (2.29) 

We can now define a net "systematic field" 

v[x; v] --~(x)+ v'[x; ~] (2.30) 

as a deterministic functional of the LS field, whereas W'[~]  represents the 
random part. 

As a final remark, let us note that it is possible in principle to 
"defilter" the solutions of the SLE if 

f't = H/*  f (2.31) 

where f is a random force whose spectral support is disjoint from the 
support of (~/(k). In that case, there is a solution of the full Navier-Stokes 
equation with the force f which, when filtered by GI, is a solution of the 
SLE given above. When the filter functions are graded, this is not true for 
the explicit choice of f~ suggested in Eq.(2.17) above. The latter 
corresponds to filtering with H~ the spacetime white-noise force f whose 
covariance is 

( f ( r t )  f ( r ' t ' ) )  = 2e063(r - r') 6(t - t') (2.32) 

Since 0~ and/-)~ must have overlapping supports for graded filters and the 
spatially white-noise force f has a flat wavenumber spectrum, a correspond- 
ing term f~= Gt * f must then appear in the LE. However, since one does 
not believe that the results in the limit eo ~ 0 will depend too essentially 
upon the precise form of the force, we expect the same results by using the 
"nondefilterable" force (2.17) as a "defilterable" one. The possibility of 
using different types of forcing in the limit eo ~ 0 limit, with hopefully 
equivalent results, will be exploited further later on. 
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2.2. Mar t in -S igg ia -Rose  Formalism for Stat ist ical  Dynamics 

We review here the field-theory method of MSR. ~)~) Its fundamental 
motivation, without technicalities, is the observation that it is difficult to 
characterize the probability distribution describing a stationary ensemble of 
turbulent flows. In that case, it may be more profitable to work instead 
with the ensemble of histories of the Navier-Stokes dynamics. This can be 
specified more concretely and, in many respects, provides an effective sub- 
stitute for the stationary measure. 

To explain the formal principles, we consider first the example of a 
randomly forced Navier-Stokes fluid. In this case, the statistical problem to 
be solved is given by the dynamical equation 

c~,v+P(V)(v" V) v =  v o / x v + f  (2.33) 

where P(V) is a solenoidal projection required to maintain the incom- 
pressibility condition (replacing a pressure term) and f is a random 
solenoidal force with a Gaussian distribution and covariance 

( .L(x, t) J~(x', t ' ) )  = P,j(Vx) F(x - x') d(t - t') (2.34) 

As we shall discuss later, the stochastic nature of the force f is not really 
necessary to our discussion, or any restriction of the method. The statistical 
problem posed by Eq.(2.33) may also be considerably generalized by 
employing other classes of random forces besides those Gaussian and white 
noise in time. The models with random forcing subsume the problems with 
random initial data, since those may be represented by an impulsive 
random force 

f(rt) = Vo(r) ~5(t - to) (2.35) 

imposed at the initial instant t o on a quiescent fluid, with the initial datum 
Vo chosen from some selected random ensemble. Although we do not need 
to assume that ( f ( r t ) ) = 0 ,  it is more convenient to assume this and to 
add, if desired, an explicit mean force f(rt) to the right-hand side of 
Eq. (2.33). In such cases 

~(rt) -= (v ( r t ) )  (2.36) 

will not be zero. If the forcing spectrum fl'(k) is supported only in a small 
interval near ko = 1/L, then Eqs. (2.33) and (2.34) are a relatively realistic 
model of homogeneous and isotropic turbulence, where the force is just a 
convenient way of injecting energy at large scales, i.e., stirring the fluid at 
length scale L. 



968 Eyink 

Rather than following the somewhat mysterious operator formulation 
originally developed by MSR t ill (see also Phythian~25'261), we shall briefly 
describe the path-integral formulation of Janssen c27~ and DeDominicisJ 28~ 
The simple idea is to write a path-integral representation for the generating 
functional Z[q ,  fi] of correlation and response functions by incorporating 
the dynamics through a delta functional in its representation by an integral 
over an exponential. The objects playing the role of "momentum" p in the 
functional integral analog of 6(x)=(1/27t)~dpe it' are the fields ~(rt), 
whose joint correlations with v's turn out to be the response functions. The 
expression for the generating functional is just 

ZEn, fi] = [ ~ f  exp[ --�89 F- ' f )  ] 

x f  ~ v ~ e x p [ i f d a r  f dt~(rt)((O,--VoA,)v(rt) 

+ P(Vr)(V(rt) " V ,) v ( r t ) -  t'(rt)) 

-i(~,f}-ifdardt(q(rt)'v(rt)+fl(rt)'Cl(rt))] J[v]  (2.37) 

where J lv ]  is a Jacobian factor which appears in the transformation 

6 [ v -  V(f)] =6[(8,-Vo A ) v - f +  P(V)(v- V) v - f ]  J [v]  (2.38) 

and V(f) is the exact solution of the dynamical equation (2.33) with 
specified force f. 

We note that a discretization of the dynamics in time will always be 
implicitly assumed in this work to give meaning to such formulas as those 
above, even where we use continuum notation as a convenient shorthand. 
Along with this, a space regularization by means of a spatial grid or a 
Fourier-Galerkin truncation will be employed. Among various choices of 
time discretization, we could use the explicit Euler scheme, 

(Vi - -  V i_  I)/Z" = K ( v i _  1) -l- f i  (2.39) 

or an implicit numerical scheme, such as 

(vi - -  v i_ i)/r = K((vi + vj_ 1) /2)  + fi (2.40) 

It is easy to check that the form of the Jacobian J[v]  and the resulting 
path-integral expression depend upon the discretization adopted. In fact, 
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there is a substantial literature on this point329-32~ If the force in Eq. (2.33) 
were multiplied by some state-dependent coefficient B(v), then it is known 
that the symmetrical time splitting as in the implicit rule (2.40) must be 
used in the noise coefficient in order to yield the continuum equation in 
Stratonovich formJ 33~ For a stochastic Langevin equation the Stratonovich 
interpretation is usually implicitly assumed since it guarantees validity of 
the familiar rules of calculus. On the other hand, the explicit or "nonan- 
ticipating" scheme leads to the Ito form. We calculate here the Jacobian 
only for these two schemes. Beginning with the symmetrical time splitting, 
we note that if V,.(v i_ ~, fi) is the solution of the discretized nonlinear equa- 
tion (2.40) for v,. in terms of v~_, and fi, then it follows from 

,('2"-')-,,) i \ T 

; r 2 &,. 

(2.41) 

that the Jacobian factor is 

OK(rt; v)] 
J[v]  =exp [- ~f dar dt tr ~ - ~ i  ] (2.42) 

On the other hand, it is clear by the same method that J [v]  --- 1 for the Ito 
discretization. We should remark that for situations where the nonlinear 
part of the dynamics satisfies a Liouville theorem, the Jacobian in fact is 
only a field-independent factor and may always be neglected. It was shown 
long ago by Lee ~34~ that the Fourier-Galerkin truncation of the Navier- 
Stokes dynamics falls in this category. We shall rederive this result in 
Appendix B, where it is shown more generally that the "effective dynamics" 
generated by elimination of the small-scale modes satisfies such a Liouville 
property. It thus turns out that in all the cases we consider the nonlinear 
dynamics satisfies the Liouville theorem and we are justified in ignoring the 
Jacobian factor. 

Performing finally the Gaussian integration over force f by completion 
of squares, we obtain 

Z[q, fl]=f~v~f~exp(iS[v,~]-i(v,q)-i(~,r (2.43) 
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which is a path integral over histories with the "action" 

S[v, ~ 3 = f ddr f dt ~(rt)((O,- Vo A,)  v(rt) 

+ P ( V r ) ( V ( r t )  " Vr)  v ( r t )  - -  f ( r t ) )  

i +~ dar dt f ddr ' dt' Oi(rt) Fiflrt, r't ') ~j(r't') (2.44) 

This expression may be used to calculate arbitrary multitime correlations 
of the velocity field by functional differentiation with respect to q(rt). 
The source fl(rt), on the other hand, appears in the action exactly as an 
external force in Eq. (2.33), so that the derivatives 

6 p+ 'Z[ll ,  fl]/Oqi(rt) 60j,(r , t,)... 60jp(rptp) 

are the higher order average response functions. 
It is not difficult to extend the formalism to non-Gaussian or "colored" 

random forces and to forces multiplicative in the random velocity v. 
Indeed, one can consider any "generalized Langevin dynamics" 

O,v(x) = K[x; v] + if[x;  v] (2.45) 

Here x = (r, t) is a space-time point and K[x; v] is an arbitrary functional 
of v which is "nonanticipating" or "causal," i.e., which depends only upon 
the "past" values of v(x') with t ' <  t. Also, f ' [x ;  v] is a zero-mean random 
force which may be "history dependent," so that its generating functional 

f @f'[v] exp( - i ( ~ ,  f ' [v ]  >) 

5 (--i)P I dd+ l "Vp 
=exp 2 P! 3 IXl '"I  dd+ 

X D(il pj...pi 1 / I  ..... -~-p ; u  /3il(Xl }""" uip(-Yp)} (2.46) 

contains cumulants D~m[v] which are causal functionals of v. This force is 
state independent only if the cumulants D ~r~ are constants (independent 
of v) and Gaussian only if D~m= 0 for all p ~> 3. Then, by the same argu- 
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ment as given above, this generalized Langevin dynamics has an equivalent 
field-theory formulation in terms of an action 5 

f. 
S[v, ~] = J d a+ 'x ~(x)(0,v(x) - K[x; v]) 

+ ~ I  d a + ' x  tr\(3K(x; v )~_~. )  / 

( __ i ) l ,  + I f d d + l \ .p + ~ p! f d  a+lx t. . .  
J p>~2 

Ipl - (2.47) x Di,...i,[.x I ..... xp; v] ~i,(xl )"" ~i,(xp) 

If this action is used in the formula (2.43), then a generating functional is 
obtained for all of the correlation and response functions of a general 
Langevin dynamics. In fact, the MSR field-theory formalism is not limited 
to situations where the production mechanism or energy injection is by a 
stochastic force. Just as discussed above in the context of "stochastic filter- 
ing," it is natural in the completely deterministic cases to add to the 
dynamics a weak stochastic force, which is then taken to zero after com- 
putation of averages. From the point of view of the previous manipula- 
tions, the addition of a spacetime white-noise force with covariance ~eo 
contributes a term -�89 ~ d a+ tx I~(x)l 2 to the exponent, which makes the 
functional integral over ~ absolutely convergent. 

Our analysis to this point has been formally exact and nonpertur- 
bative, even mathematically rigorous if we consider a discretization of the 
dynamics on a spacetime grid. However, for the dynamical problem of 
Eq. (2.33) there is a naive perturbation expansion in the nonlinearity 
studied by Wyld 135~ and Kraichnan/361 See also ref. 37 and Appendix A for 
a brief review. Its basic elements are the "bare" response function G ~~ 
correlation function U ~~ and average field V~ It is not obvious that this 
expansion will be quantitatively useful in the case of high-Reynolds-number 
turbulence, but it does help to build up some intuition about the physical 
meaning of the formal analysis and to give the point of departure of 
various approximation methods. Clearly, the "bare expansion" degenerates 
in the vanishing noise limit e0 "--' 0. In fact, U c~ ~ 0 in that case. Since any 
closed loop of response lines vanishes by causality, all that remains are the 
"tree graphs" for v terminating in ~~ which represent the perturbative 
solution of the deterministic Navier-Stokes equation with a body force. 

5 It is known that this is not  the correct cont inuum form of the action even for a general diffu- 
sion process with multiplicative noise: see Section 4 of ref. 29. We emphasize again that it is 
crucial to interpret all such formulas for the discretized dynamics. 
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However ,  a nont r iv ia l  s ta t is t ical  l imit  m a y  still be ob ta ined  by  m a k i n g  
a revers ion of  "bare"  p r o p a g a t o r s  and  vertices for "dressed"  or  " renor -  
mal ized"  ones p r io r  to t ak ing  eo ---' 0. Such a revers ion can be accompl i shed  
by nonpe r tu rba t i ve  funct ional  Legendre  t rans form techniques,  as in the 
work  of  MSR,  ~ or  by pe r tu rba t ive  series revers ion as in ref. 38. 

2.3. Stat ist ical  Fi l tering in the M S R  Formal ism 

We shall now expla in  the M S R  a p p r o a c h  to "s ta t is t ical  f i l tering" of  the 
N a v i e r - S t o k e s  dynamics .  It was ear l ier  descr ibed wi thou t  a deta i led  
account  in our  paper ,  139~ which discussed the founda t ions  of  the renor -  
ma l iza t ion  g roup  ( R G )  me thod  in turbulence.  6 The first s tep is to add  inde- 
pendent r a n d o m  forces l" and  f '  to the LE and SE, respectively:  

c3,~ + V- (VV + x) = -V/~ + Vo AT + (2.48) 

and 

O,v' + V �9 (Vv' + v'~ + v'v' - x) = - V p '  + VoAV'+  f ' (2.49) 

(Here  and  af te rward  we omit  the subscr ip t  1 for s implici ty.)  I f  we used the 
sharp  Four i e r  filter and  any h o m o g e n e o u s  r a n d o m  force in the full N a v i e r -  
Stokes equat ion ,  then the associa ted  LE and  SE would  au toma t i ca l ly  con-  
tain such independen t  r a n d o m  forces. However ,  with g raded  filters, the 
independence  p rope r ty  would  not  be true. Hence,  we in t roduce  the inde-  
penden t  r a n d o m  forces after filtering. The  ampl i tudes  of  bo th  forces will be 
t aken  to zero. In fact, the in t roduc t ion  of  the force in the LE equa t ion  is 
real ly not  necessary,  bu t  in t roduced  jus t  as a ma thema t i ca l  device to 
regular ize the pa th  integrals.  Then the same me thod  used prev ious ly  m a y  
be employed  based u p o n  the formula  

It appeared in that context because the definition of the RG operation always uses an 
elimination of high-wavenumber degrees of freedom, or filtering, as one of its parts. 
However, RG supplements this with a rescaling of the remaining "large-scale" variables by 
a "renormalization factor" Z(I) in such a way as to get a limit as the filtering length/~ +co. 
Essentially this strategy is a generalization of probabilistic "central limit theorem" ideas to 
a functional context. Furthermore, rather than performing the filtering and subsequent 
rescaling in one step, RG proceeds iteratively, filtering out some fraction of scales (say, one- 
half of them) at each step and rescaling the remaining ones. This allows the evolution in 
scale to be visualized as a "dynamical flow" in a space of theories, in which complex 
behavior can build up in the "long-time" limit. None of these RG strategies will be applied 
here, since we have not found them to be useful for justifying turbulence model equations. 
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( (-7 5 );) __,-1 K' Vi i--l, Vi t i _ f  x J  v~-  v'. v'_ 
"L" 

lq  ~ ( v , -  re,(v,_ ~, );, v';_ ~, f;))  6(v~ - v~(~,_ ~, ),, v',_ ~, f;))  
i 

. ! V I. 1 JK'  (~,.+2i_,,  v i 

where ~, and K' represent the dynamical terms in Eqs. (2.48), (2.49). It is 
shown in Appendix B that, just as for the full NS equation, there is a 
Liouville theorem for the nonlinear terms of the coupled LE and SE. Thus, 
the Jacobian factor may be neglected. The final result is a path-integral 
representation of the distribution over histories with the following action 
function: 

S[V, ~, v', 0'] = (~, (c3,- v0A ) ~ + P(V) V. (VV + ~)) + li(~, F" ~) 

+ (~', ( 0 , -  VoA) v '+  P(V) V. (Vv' +v 'V+ v ' v ' - ~ ) )  

1. ^, ~,)  (2.51) + _~l(V, F' �9 

and integration measure 

~ ~ ~v '  90 '  = 1--I d~(x) d~(x) dv'(x) d~'(x) 
x 

This measure only exists as a formal expression, unless we consider the 
discretized dynamics on a spacetime grid. 

The "stochastic filtering" is then carried out in the MSR formalism by 
simply integrating out the SS fields v, to give an "effective action" 
Serf[V, ~] for the LS fields. In fact, we shall show that performing this 
integration gives an MSR action of the form which we previously derived 
starting from a "generalized Langevin equation": 

soft[v, ~] = <L  ( a , v -  Rofr[v])> 

+ ~ (--i)P+l 
p>~2 P ~  D~P)[V](1 " p )  ~(1)... ~(p) (2.52) 

822/83/5-6-12 
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We shall show that the systematic part of the dynamics obeys a Liouville 
theorem, so that the functional trace vanishes which would appear from the 
evaluation of a Jacobian: 

Tr ( .~K~[v] )  = 0 (2.53) 

Therefore, it will be established that the LS velocity field obeys an "effective 
dynamics" in the generalized Langevin form 

O,~(x) = g,~fr[ x; ~] + i'~lr[x; v] (2.54) 

Furthermore, the derivation will show that the terms in Eq. (2.54) are given 
explicitly as 

g~n-[x; v] = -P(V)  V- ( ~  + r"Ex; v] ) (2.55) 

in which r"[x; V] is a symmetric tensor and causal functional of ~, and, 
likewise, 

i'~n-[x; v] = -P (V)  V" T"[x; ~] (2.56) 

where ~r[x; ~] is a random symmetric tensor field with a distribution 
dependent only on the past history of ~. From these results we obtain the 
exact representation of ~[~] in Eq. (2.1). 

We begin by making the following decomposition of the full MSR 
action for the original problem (2.33) into three separate terms: 

s[~, ~, v', ~'] 

= (~, (O,--VoA) V+P(V) V.(VV)) + �89 F - ~ )  

+ ( V ,  (O,--VoA)v' + P(V) V-(Vv' +v'V + v ' v ' - T ( ~  + v', V + v'))) 

+~i(~', V'.~'> 

+ (~, P(V) V �9 T(~ + v', ~ + v ' ) )  (2.57) 

The principle of the decomposition is this: the first part contains all the 
terms involving only LS fields; the second and third parts contain a / / o f  the 
SS fields including their couplings to the LS fields; of the latter two, only 
the third contains ~, the LS response field. We could, if we wished, include 
the contribution from the Leonard stress L(~, ~) in the third part instead 
of the first part, but it is a little easier to keep all of the contributions to 
turbulent stress together. Now, if the integration over SS fields is per- 
formed, then the terms in the first part come out of the integral. The second 
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line is the MSR action of the SS field v' "conditioned" on a given history 
of the LS field, 

Sfv',~'l~l 
= (~', (0,-- voA) v '+P(V)  V . ( i v ' + v ' ~ + v ' v ' - T ( ~ + v ' ,  ~ + v ' ) ) )  

+ �89 F' �9 ~') (2.58) 

We can also introduce a random spacetime field 

A(x; ~, v') = - P ( V  x) V x �9 T(~ + v', ~ + v') (2.59) 

which, for a given solution of the conditional SS dynamics, represents the 
"acceleration history" on LS fields from the interaction with and by SS's. 
Note that it is afimction of v(., t) = ~( -, t) + v'(., t), not a functional of the 
entire past history. Then, the LS "effective action" is given exactly as 

S~n.[ v, ~] = <~, ( a , -  Vo A ) ~ + P(V) V" (~)>  + �89 F" ~> + A~rr[ ~7, r162 

(2.60) 

in which A~jr is represented by the path integral 

exp(iA~,r[~, ~])=f ~v' ~r exp(iS[v', ~'[~]--i<~,A(v) > (2.61) 

Assuming that A~rr[~, r is functionally analytic in ~, we may wnte 
Taylor series expansion 

( - i) / '  + ~  I 
A~n.[~7, ~] = ~ P! D~.)[~](1 ...p) ~(1)---~(p) 

p~>l 

out its 

In terms of the diagrammatic expansion discussed in the previous subsec- 
tion the graphical interpretation of the perturbation terms contributing to 
D~m(1 ..... p) is that it consists of all connected vacuum graphs of the field eft 
theory with vertices generated by the nonlinear terms in Sly' ,  ~l~] and 
only SS propagators, and with exactly the insertions ~(1) ..... ~(p) and 
arbitrary insertions of ~. If we then take 

�9 �9 n ~ l r . - ,  i ]  (2.63) R~fr[x; i ]  -- voAxi(x)--P(Vx) Vx [ i (x)  i (x)]  + ~frL--,  

we obtain a total "effective action" of the LS fields exactly in the form of 
Eq.(2.47). We must only show that the K~r has the Liouville property 
(2.53) when Vo=0. 

We show that K~fr satisfies the Liouville theorem (for Vo=0) to all 

(2.62) 
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orders in the diagrammatic perturbation series. We note that the existence 
of the Liouville theorem is a necessary result for the consistency of two 
facts: (i) that the effective LS dynamics is given by a generalized Langevin 
equation (GLE) and (ii) that no 9-independent term appears in the expan- 
sion of A~n-(which would correspond to a p = 0 term in its series expansion 
in 9). The perturbative demonstration of (ii) is based on causality. Indeed, 
consider any graph with no ~-insertions and only ~-insertions. Starting at 
any vertex and following the unique path along response lines, one must 
eventually arrive back at a vertex previously visited, because there is only 
a finite number of vertices and there is no "outlet" to an external 9. 
However, any graph with a closed loop of retarded response lines vanishes; 
QED. This argument and the previously established representation of LS 
dynamics by a GLE imply the Liouville theorem. It can also be verified 
directly, as we show in Appendix B. Thus we have now verified that the 
elimination procedure in the MSR path integral yields a "generalized 
Langevin equation" for the LS modes. 

To make connection with our previous derivation, let us consider how 
the elimination step is accomplished formally. Integrating over ~' recovers 
the representation 

exp(izl ~n[ v, 9 ] ) 

= f  CJv' f ~P[f'] 6{O,r V.[~v' +v'~ 

+ v'v' - T ( v ,  v)] - VoAV' - f ' }  

x exp[ --i< ~, A(v)> ] (2.64) 

Given the LS history ~, the SE equation may be integrated forward from 
the initial time to give the SS field as a solution 

v'(x) = V'[x; ~, f ' ]  (2.65) 

where the dependence on both ~ and f' is causal, exactly as before. We may 
now perform the integration over v', noting again that the Jacobian factor 
is constant and can be absorbed into the integration measure, giving 

exp(izl~r[~, 9 ] ) = f  ~ P [ f ' ]  exp{ - i ( 9 ,  A(~ + V'[~, f ' ] ) ) }  (2.66) 

Notice that the functionals ~n'n~P~ introduced above by the Taylor series 
expansion of ACn. in 9 are exactly the pth cumulants of the random variable 
A[x; V, f ' ]  distributed with respect to P [ f ' ]  with ~ considered fixed. If we 
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represent this average with <-I~> as before, then we may separate the 
turbulent stress T into the "systematic part" 

T'~[x; v] = <T[x;  v, �9 ] Iv> (2.67) 

and the "random part" 

x"[x; v] = T[x ;  v, �9 ] - v"[x; v] (2.68) 

with zero "conditional mean." This gives the LS effective dynamics in 
exactly the form earlier claimed in Eqs. (2.54)-(2.56). For  example, 

D~n?[x; v] = -P (Vx)  Vx" ~"[x; v] (2.69) 

while 

i f [x;  v] = -P (Vx)  V,," zr[x; V] (2.70) 

Our choice of division into "random" and "systematic" terms was made 
precisely because of its natural appearance in the MSR method. The fact 
that the functionals r~lrl ~n -  are the cumulants of an actual random field A has 
an importance which cannot be overemphasized. For  example, it implies 
that an infinite number of rectlizabil#y inequalities for the D Ip~ Cj~. are satisfied, 
of which the lowest order is 

D•21>-0 (2.71) ely 

The inequality here is to be interpreted as positive-definiteness in the 
operator sense. 

Our analysis so far has been exact (and even, for a numerical dis- 
cretization, rigorous). However, to get some intuition about the physical 
terms which arise from our "statistical filtering" it is useful to consider the 
perturbation series evaluation of A~n.. It is then convenient to set 
v = ~ + v'[~],  as in Eq. (2.30), and make the following change of variables 
in the path-integral formula: ~--+ 0, 0'--+ ~', v'--+ v'[~] +w' .  This leads to 
the new MSR action 

S[v, 0] = (0, ( 0 , -  voA) v + P ( V )  V.(vv)> +�89 F'.0> 

+ (~ ' ,  ( O , - v o A )  w ' + P ( V )  V. [v'w' + w ' v ' + w ' w '  

- T ( v + w ' ,  v + w ' ) ]  + �89 F " f f ' >  

+ <0, P(V) V .T(v+w' ,v+w' )>  (2.72) 
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The Feynman rules are changed for the calculation of the functions ~rrr~lP~ by 
the simple modification that insertions of v occur rather than of ~. The 
generalized Langevin equation is then also given in an altered form, as 

0,v+P(V) V'(vv+T[v])=0 (2.73) 

As before, the separation of T into systematic and random parts may be 
made. 

To second order in the formal coupling parameter, four terms arise 
in Aon-, which were already noted in ref. 39 (and independently in ref. 8). 
They are shown in Fig. 1, which gives the linear damping on v due to the 
eliminated high-wavenumber modes, Figs. 2 and 3, which represent the 
generated noise terms, and Fig. 4, which is the lowest order cubic non- 
linearity ~ v  3 in the effective LS dynamics. Except for the "multiplicative" 
noise term (the third), these contributions were already noted in 1977 by 
Rose in the problem of passive scalar diffusion. In that case, the fluctuating 
equation was the conservation of scalar concentration ~, or 0,q~ + V .j  = 0, 
and all of the terms were observed to give contributions (systematic or ran- 
dom) to the concentration flux j. Rose referred to the first as "eddy difo 
fusivity" (here, "eddy viscosity") and the second as "eddy noise." He 
referred to the last term as "eddy-mediated diffusion" (here, diffusion of 
momentum rather than of scalar concentration), which is a nonlocal trans- 
port effect due to the "disappearance" of the conserved substance into the 
subgrid modes and its subsequent "reemergence" into the resolved modes 
in another location at a later time. For  inhomogeneous flow there is an 
additional fifth term generated at first-order in the coupling, which is 
represented by the graph in Fig. 5. It is independent of the systematic 
velocity field and represents a "turbulent body stress," or pressure tensor 
due to the small-scale turbulent fluctuations. 

It should be observed that higher order contributions besides these five 
terms cannot be considered negligible. We see no good theoretical argu- 
ment that Yakhot's conjecture about large-scale equivalence of the KS and 
noisy Burgers dynamics should be exactly correct. RG methods do not 
support the "irrelevance" of additional contributions to the dynamics at 
asymptotically large scales. As we have discussed in detail in ref. 39, addi- 
tional terms such as the new cubic nonlinearity (Fig. 4) are nTarginal by 
power counting for any RG that respects Galilei covariance. Hence, that 
term ought to remain at large length scales in the KS dynamics. 7 However, 

7 Note that we have shown also in ref. 39 that those terms may be legitimately neglected using 
an "improved" RG method, but that revised method only works in the weak-coupling 
regime for small e. It is not helpfnl in the case of I D noisy Burgers dynamics, which involves 
a strong-coupling fixed point. 
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Fig. 1. Eddy damping. 

Fig. 2. Eddy noise. 

Fig. 3. Multiplicative noise. 

Fig. 4. Eddy-mediated diffusion. 

Q 

Fig. 5. Turbulent body force. 
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we agree with the essence of Yakhot's conjecture that the large-scale 
dynamics should be stochastic and similar to noisy Burgers dynamics. 

Another defect of perturbation theory has already been mentioned 
(end of Section 2.2), namely, that the noise terms all vanish when eo ~ 0 if 
bare propagators are used. This can be seen to occur in the work of 
Yakhot, for his noise term, Eq. (12) in ref. 21, goes to zero in the limit 
D(k)  ~ 0 as his initial data become deterministic [see his Eq. (8)]. Line- 
reverted or high-order vertex-reverted expansions seem to be potentially 
useful here. In fact, L'vov et al. (4~ have attempted to use such a "self-con- 
sistent expansion" to establish scaling predictions of Yakhot's conjecture. 
However, their "proof" still uses a weak-coupling expansion without 
justification where the interaction is large. Furthermore, it does not seem 
that any of these perturbative methods are sophisticated enough to dis- 
tinguish between "chaotic" and "integrable" dynamics. The perturbative 
argument of ref. 40 uses no more than the gross form of the nonlinearity 
and could be used also to "prove" equivalence of deterministic and noisy 
Burgers! Clearly, KS and Burgers as deterministic equations should behave 
very differently under "stochastic filtering," since only the former should 
remain noisy, with some universal law of fluctuations, in the limit eo--* 0, 
whereas the noise in the latter will depend upon the imposed random forces 
and presumably vanish entirely as they are taken to zero. 

A concern with any approximation scheme attempted is the 
realizability constraints on the noise cumulants DIp). Notice from our exact  

expressions that all realizability inequalities for the D (r) will obtain in the 
limit eo ~ 0, although they may conceivably degenerate (i.e., all D(Pl--~ 0). 
One way to ensure such constraints are satisfied is, as Kraichnan has 
emphasized, (36) by constructing model realizations for the approximations. 
In Section 3 we shall describe how a direct-interaction approximation may 
be considered in which only the terms for the one-loop graphs above are 
legitimately retained in the SLE dynamics and which represents the exact 

SLE dynamics of a certain "random-coupling model." In that case, the 
propagator lines are the full propagators determined from the solution of 
a self-consistent "DIA equation" for the SS mode statistics into which are 
coupled the mean values of the LS modes. 

3. PRINCIPLE OF LEAST EFFECTIVE ACTION 

3.1. Derivation and Comparison with the Onsager Principle 

The formulation by MSR (~) of classical statistical dynamics as a for- 
mal quantum field theory allows one to carry over many techniques from 
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that field. In particular, there is a minimum principle for vacuum expecta- 
tions of field operators in Euclidean quantum field theory, which is due to 
Symanzik (see the Appendix of ref. 41). This principle involves the 
"effective action" of the field theory, a concept which has its roots in the 
early work of Heisenberg and Euler ~421 and Schwinger t43) in QED. 
However, it turns out that the equivalent principle for nonequilibrium 
statistical dynamics was introduced even earlier in the famous 1931 work 
of L. Onsager on the reciprocal relations t12~ (see Section 5 of both his 
papers). This idea was further developed in a later paper of Onsager with 
his student S. Machlup. ~ In the situation they considered the random 
force corresponded to molecular noise obeying the fluctuation-dissipation 
relation and the action function had the physical meaning of a "dissipation 
function." Therefore, the action principle corresponded to a "principle of 
least dissipation." Although originally developed only for linear transport 
processes, the principle can be extended to the nonlinear regime) 45"46~ 
Furthermore, as pointed out by Graham (ref. 45, Section 7), the principle 
is then seen to be precisely the analog of the "least effective action 
principle" of Euclidean field theory. 

We shall give here a self-contained discussion of the least-action prin- 
ciple, following closely the accounts in refs. 41 and 45. It will be seen that 
the principle has a very general basis and that, in fact, its origin is the same 
as that of the familiar equilibrium variational principles of maximum 
entropy, minimum free energy, etc. The main requirement for its validity in 
a global sense is finite exponential moments of the statistical distribution. 
That is, it is required that 

f ~P(v)  < ov e(f,v) (3.1) 

where f is a real-vector-valued test function. We have in mind here that the 
distribution is over spacetime histories of a turbulent velocity field, but P 
could really be any probability measure whatsoever. We will see that a con- 
siderably weaker condition than finite exponential moments is sufficient for 
the principle to be valid in just a local sense. However, if Eq. (3.1) holds, 
then we may define 

W[f]=log[ f ~P(v) e<r'"> 1 (3.2) 

which is a cumulant-generating functional of the distribution P. It is a con- 
sequence of the positivity of the distribution and the H61der inequality that 

f~p(v) e<).f,+"-).)r2,v><(f ~p(v)e<r,.*>)~(f ~p(v)e<f'-,v>)'-)'(3.3) 
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for 0 < 2 <  1, or 

W[2f, + ( 1 - 2 ) f , ]  ~<2W[f,] + ( t - - 2 )  W[f2] (3.4) 

In other words, W[ f] is a globally convex functional of its argument. 
Observe that this is a result just of a simple realizability inequality for the 
distribution. 

However, it is easy to see that 

6W[f]  
= vi[rt; f] (3.5) 

6f,.(rt) 

where the latter is the expectation 
weighted by the exponential factor. 
convex functional is 

of the velocity field in the distribution 
Therefore, the corresponding conjugate 

FEv] ---sup ( ( f ,  v) - W[f])  (3.6) 
f 

This is the definition of the effective action. Observe that it satisfies 

6Fly] 
= f i [ r ,  t; v] (3.7) 

6vi(rt) 

where f[v] is the inverse functional to v[f].  Since F [ v ]  is also globally 
convex under the assumption (3.1), it follows that it has an absolute mini- 
mum (possibly nonunique if F is not strictly convex). However, since 
~=  ( v ) ,  the ordinary expectation of the velocity field, 8 is just equal to 

= v[0] corresponding to f = 0 ,  it follows that 

6F[r~] = 0  (3.8) 
6vi(rt) 

That is, ~ is the stationary point of F [v ] ,  which is the point at which F 
attains its absolute minimum. That the mean velocity field is characterized 
as the point at which F achieves its minimum is just the precise statement 
of the principle of least effective action. 

Even without the assumption (3.1) of finiteness of all exponential 
moments a local version of the principle may be formulated, assuming that 

s Observe that our notation here differs from that in other sections, where ~ represents a large- 
scale velocity obtained by filtering. 
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W[f] exists in some small neighborhood of f=O and finiteness of second 
moments. In that case, 

6-" w[ f] 
5f,.(rt) dif,.(r't') - U~i[rt' rt; f] (3.9) 

where U[ f ]  is the second-order velocity cumulant in the exponentially 
weighted distribution 

Uo.[rt, r ' t ' ; f]=(vi(r t)  v i ( r ' t ' ) ) t - (v i ( r t ) ) f (v j ( r ' t ' ) ) f  (3.10) 

Again, it is a simple realizability condition that U i> 0, as an operator 
defined by the kernel in Eq. (3.10). The conjugate F may still be defined 
locally by values at the stationary point of the quantity in parentheses in 
Eq. (3.6). Then Eq. (3.7) still holds and further 

~'-/'[v] 
~vi(rt) ~vi(r,t, ) = (U-J)iy [rt, rt; f [ v ] ]  (3.11) 

By positivity of the latter kernel, it follows that the stationary point v of 
F [ v ]  is at least a local minimum. 

The comparison with the Onsager principle may be found in refs. 45 
and 46. As noted, that principle applies to thermal or molecular noise, 
governed by a fluctuation-dissipation relation. Since this noise is very 
weak, the corresponding path-integral formula for W[f] may be evaluated 
by steepest descent. The resulting action is just the "classical" one given by 
the Onsager-Machlup Langrangian functional. ~44~ In other words, there is 
no "renormalization" of the action in this case. On the contrary, in tur- 
bulence there should be, as we have discussed, a strong renormalization of 
the noise and the effective action will differ from the "bare" MSR action 
appearing in the path integral. This makes it far more challenging to 
calculate the effective action for turbulence noise than for molecular noise. 
However, turbulence is for the same reason a far more promising area of 
application of the principle. Molecular noise seems too weak in general to 
have important influence in nonequilibrium pattern formation and the 
"least dissipation principle" has few important applications in that area. On 
the other hand, turbulent fluctuations are large and must play a leading 
role in determining mean turbulent velocity profiles in such inhomogeneous 
situations as channel flow, flow past an obstacle, etc. Therefore, the least- 
action principle should be relevant in those cases. 

This principle may be extended to statistics higher order than mean 
quantities if some stronger moment conditions are satisfied. This was noted 
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by Cornwall et alJ 471 in the context of relativistic field theory. For example, 
if the following moment condition is satisfied: 

f ~P(v) exp((f, v) + �89 v |  < oo (3.12) 

with 

( F , v |  r't')v,(rt)vj(r't' ) (3.13) 

then a generalized generating function may be defined as 

W[f, F] = log  I f  ~P(v) exp((f, v) + �89 v | v))]  (3.14) 

The H61der inequality still implies for 0 < 2 < 1 that 

W[2f~ +(1 - 2 )  f2, 2F, + ( 1 - 2 )  F,_] .N<2W[f~, F~] +(1 - 2 )  W[f2, F2] 
(3.15) 

In other words, W[f, F] is a globally convex functional of both arguments. 
Furthermore, 

6w[f, F] 
8fg(rt) 

= vi[rt; f, F] (3.16) 

and 

OW[f, F] 1 
(v;[rt; f, F]  vj[r't'; f, F] + Uu[rt, r't'; f, F])  (3.17) 

6Fo(rt, fit') 2 

Hence, a conjugate convex functional F[v, U]  may be introduced as 

F[v, U] = sup ((f, v) + �89 v |  + U )  - W[f, F])  (3.18) 
f.F 

It satisfies 

6r[v, v]  
,~vi(rt) 

f i [ r , t ; v ,U]+fdr 'd t 'Fo . ( r t ,  r't')vj(r't' ) (3.19) 

and 

,~F[v, U] 1 F~j[rt, fit'; v, U]  (3.20) 
,~Uo(rt) 2 
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Thus, the average ~ and cumulant U for the f = F = 0 ensemble are just the 
minimum points of the generalized action: 

6rEv, O] 6r[~, O] 
m 

~vi(rt) ~Uu(rt) 
- 0  (3.21) 

This principle characterizes by a minimum principle also second-order 
statistics such as the Reynolds stress r0.(rt)= 0~(rt, rt) and the turbulent 
intensity K(rt)=�89 rt). It is easy to see how to formulate also 
restricted versions of the previous construction just for these quantities, or, 
in the other direction, to extend the principle to statistics of third and 
higher order. 

We therefore see now that--in principle--all turbulence statistics will 
be characterized as the minimizers of an appropriate action functional. 
Needless to say, this is practically useless without a means to calculate the 
action. Fortunately, there exist in quantum field theory methods of doing 
so. One of the methods is the semiclassical loop expansion. However, this 
depends upon the existence of a small parameter (Planck's constant h in 
the quantum mechanics context) and there is no such small parameter in 
turbulence. However, there is another method in field theory which is non- 
perturbative, based upon a theorem of Symanzik. 14~1 The latter provides a 
variational characterization of the static effective action, more commonly 
referred to as the effective potential. This is obtained from the full action by 
defining, for any time-independent c-number field ~b(r), the time-extended 
field ~br(r, t) by 

q~r(r, t )=  {S(r) ifotherwiseltl ~< T/2 (3.22) 

Then the "effective potential" V[ q~] is defined as the infinite-time limit 

VErb]= lim FEOT] (3.23) 
r -  +~ T 

The effective potential is appropriate to determine expected field configura- 
tions in the time-invariant ground state of the theory. What Symanzik 
proved ~4j~ is that this quantity may be characterized as the expected value 
of the quantum Hamiltonian operator/~ over all Hilbert space vectors 71 
with fixed field expectation ~(r). That is, 

V[~b] =inf{ ( ~ u , / ~ ) :  (~u, ~u) = 1, ( ~ ,  O(r) P )  = ~b(r)} (3.24) 
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Symanzik's theorem corresponds to a constrained version of the well- 
known variational principle for the ground-state energy in quantum 
mechanics, according to which 

E g  . . . .  d state = inf{ < ~, H~>: < ~, ~> = 1 } (3.25) 

The practical significance of this result is that it can be used to formulate 
Rayleigh-Ritz variational calculations of the effective potential. This 
strategy has been employed in ref. 47 to calculate V[~b] by choosing a 
family of trial states { ~.} and then varying the parameters 2 to optimize 
the guess. This yields an approximate result both for V and also for the 
ground-state wavefunction 12. The important feature of such variational 
methods is that they are systematically improvable, even convergent to the 
true answer, by suitably enlarging the class of trial states. 

We shall show in the following sections that Symanzik's theorem, as 
well as various generalizations of it to the full, time-dependent action and 
to action functionals for higher order statistics, can all be extended to the 
MSR context. Furthermore, this will allow us to elaborate Rayleigh-Ritz 
methods applicable to turbulence. The standard statements and proofs are 
not automatically valid in MSR field theory because of the peculiar feature 
--noted by MSR themselves--that their formal quantum theory is one 
with a "non-Hermitian Hamiltonian." However, we shall see that a simple 
modification suffices to make the results all valid there. 

3.2. Operator Formulation of MSR Field Theory 

As already noted, the original paper of MSR I ~  developed the field- 
theory method by simply postulating an appropriate set of commutation 
relations between the usual variables and a new "response operator." 
A more concrete study was then made by Phythian] 25"26~ who constructed 
canonical representations of the MSR commutation relations. It was also 
observed by him that the operator approach seems to be limited to the case 
of Markov dynamics. We shall describe here briefly the operator formula- 
tion, following a similar approach to that of Phythian (but with a few 
differences). 

To this end, let us consider again the case of a generalized Langevin 
equation 

O,x,, = K,[x]  + f ' , [ x ]  (3.26) 
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where K[x] is an arbitrary causal functional of histories x(t) and f ' [x ]  is 
a zero-mean random force with generating functional 

(__i),, r - Dc,,~ r x l ]  f ~ f ' [ x ] e x p ( - - i ( p , f ' [ x ] ) ) = e x p  ,,~2 ~ jp, , . . .e , , , ,  i,...i,,,t J f  

(3.27) 

where the cumulants Dt"n[x] are again causal functionals of x. Then, by 
the same argument as given previously, this generalized Langevin dynamics 
has an equivalent field-theory formulation in terms of an action 

Note that 

where 

SEx, p] = f dt p , , ( t ) ( .%(t) -  K,,[ t; x])+2 f dt(~K"[ t; x] 
~x,,(t) 

+ ~. ( - i ) " ' + t f  D,,...,,,,[t,x] (3.28) m! dtp~,(t)...p~,,,(t) ~,,,I . 
m>~2 

S[x, p] = I (p''" S',,- H[x, p] ) (3.29) 

H [ x , p ] = p , , K , , [ x ] -  ~ ( _ _ i ) m + l  r,,~,,O r ~ l  m! Pi t ' '  "Pin, Uil--. imL'~J (3.30) 
m~2 

For simplicity, we consider now and hereafter the case where a Liouville 
theorem is satisfied (or else the Ito rule is used). The Euler-Lagrange 
equations of motion of this action are 

( - - i )  " '+ l Di,n .%( t) -- K,,[ t; x] + )-" imS~(p, , ( t ) . . .p , , , ,_ , ( t )  ,a,...,,,,_,Et; x] =0  (3.31) 
ttt>~2 

and 

6K,,, t' - p , , ( t ) - ~ d t ' p , , , ( t ' ) ~  [ ;x ]  

( - i )  ' '+l f ~"'~ 
,,,~>2 ~ m! J dt'pi'(t')'"Pi'(t')~SD~i'~!'~"'[t';x]=O~x,,(t) + (3.32) 
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Now assume that 

Kit;  x]  = K(x(t)), D t ' l [  t; x] = Dl")(x(t)) (3.33) 

that is, these quantities depend only upon the instantaneous values of the 
state variables. This restricts one to the case of Markov dynamics, as pre- 
viously noted by Phythian. In that case it is possible to restate the problem 
as a formal quantum theory with Hamiltonian operator 

~ = P , , K , , [ ~ , ] -  ~ (_i) , , ,+l  ,,,>~2 m! 1~;'""/~" ~l,,,~. FOg1 (3.34) - -  In l  ~ i l  " �9 �9 I m  L " -  A 

where the usual canonical commutation relations hold between .~,,,/~,,: 

[~,, , /~,,]  = i6  ..... (3.35) 

The equations of motion then follow in operator form as Heisenberg 
equations 

iO, O= [ 0 , / ~ ]  (3.36) 

o r  

and 

t - - i W  + 1 
^ (m) ^ 0 ,2 , ,=K , ( . ' ~ ) -  ~ '-,--'--' =7; /5,, '"P,.,_,D,,,.../,,,_,(x) 

m/>2 [ l l l ' ~  I J! 
(3.37) 

OD,, ... ;,,, (~,) (3.38) OK,,, ( _ i),, + i t,,,) 
O,P,,= -P ' "~x , ,  [X] + ~ m! P,,"'Pi,,, Ox,, 

m > ~ 2  

Observe that /~ is not formally self-adjoint: it is just the "non-Hermitian 
Hamiltonian" of MSR. Actually, MSR considered instead operator equa- 
tions of motion 0 , 0  = [0 ,  s  with the trivially related operator s = -i~q. 
For a general Markov process this is just 

0 ( -- 1 )" 0"' FD~,,I 
s [ K ' ( x ) ' ] +  ~" m! 8xi,...Ox~,, L - ' ' ' i ' ' ( x ) ' ]  (3.39) 

m>~2 

in the canonical representation. It coincides with the well-known Kramers- 
Moyal expansion of the Markov evolution operator/4gl In particular, for 
the specific case of a diffusion process 

8 1 O 2 
s  - - -  [ K,(x) . ] + - -  [ D~,,,(x) . ] (3.40) 

0x,, 20x~ 8x,, 
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and coincides with the Fokker-Planck operator, ~48~ in which K is the drift 
vector and D the diffusion tensor. 

In the operator formulation, the statistical correlation and response 
functions are represented as vacuum expectation values of the time-ordered 
products of the operators X and P. The latter are usually called "Green's 
functions" in field theory. However, since ~ is non-Hermitian, the "right 
vacuum state" 

and "left vacuum state" 

are distinct. In fact, 

f l  IQ+> =0 (3.41) 

f l *  Isg- > = 0 (3.42) 

(x l l 2  + ) =p(x )  (3.43) 

where p is the density of the stationary measure of the process and 

( x l ( 2 - )  = 1 (3.44) 

If time-dependent "Heisenberg picture" operators are introduced as 

O(t) = ei'fl Oe -itFl (3.45) 

then it is easy to see that 

(x,~(t~)....x'~,,(t,,))=(O- I T[~,(t~)...)?~,,(t,,)] lI2 +)  (3.46) 

in which the LHS is the n-point statistical correlation function of the 
process and the RHS is the vacuum expectation of the time-ordered 
(increasing right to left) coordinate operators A>~(t). Furthermore, the time- 
ordered vacuum expectations of the momentum operators P~(t) along with 
the coordinate operators give the linear and higher order mean response 
functions. The linear response function is defined as usual by 

, / 6 x , , ( t ) \  
G , , , , ( t - t ' ) = \ ~ /  (3.47) 

where f,,(t) is an external, deterministic force coupled additively to the 
Langevin dynamics. We shall just show here that indeed 

G,,,,(t) = - i ( 1 2 - I  T[~, , ( t )P, , (0)]  It2 + )  (3.48) 

822/83/5.6.13 
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and we leave the consideration of higher order response functions to the 
reader. First we observe that due to 

P,,,IO-> =0  (3.49) 

any Green's function whose latest time variable is a momentum operator 
must vanish. Hence, the RHS of Eq. (3.48) vanishes for t < 0, just as does 
the causal response function on the LHS. Furthermore, by means of the 
canonical commutation relations, 

-i)(,,(t) P,,,(O) = i[ P,,,(O), X,,(t)] - iP,,,(O) f(,,(t) 

ac3,,(t) iP,,,(o), f(,,(t) ( 3 . 5 0 )  
Ox,,( O ) 

Thus, for t > 0 

/ Ox,,(t) \ 
- - i ( f2-1  T[J?,,(t) P,,,(0)] I~+> = \ax,, ,(o)/ (3.51) 

Now making a small perturbation x(O)--* x (O)+e  in the initial data is the 
same as making a small perturbation f(t)--* e .  6(t) in the external force. By 
the definition of functional differentiation it follows that 

ax,,(t) ~x,,(t) 
8x,,,(o) gL,,(o) 

(3.52) 

which is the usual instantaneous response function G,,,,,(t, 0). The stated 
identity (3.48) immediately follows. 

3.3. Symanzik-Type Theorems for MSR 

We can now state and prove the version of Symanzik's theorem which 
holds in MSR field theory. It requires a very simple modification associated 
with the non-self-adjoint character of the formal Hamiltonian. More 
precisely, we have the following result. 

Theorem 1. The effective potential 

�9 1  x]=T m  rE• (3.53) 
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for a stationary Markov process is the value at the extremum point of the 
functional 

V[ ~§  ~u- ] = _ (  ~u- I s 1~+ ) (3.54) 

varying over all pairs of state vectors ~+,  ~u- subject to the constraints 

( ~u- I ~e§ ) = l (3.55) 

and 

( ~ - I  1~ I ~/'§ ) = x  (3.56) 

Whereas the original version of the theorem required just one trial 
state, now there must be two independent trial states. 

Nevertheless, the proof is similar to the original one of Symanzik. c4~t 
Observe first that the generating functional W[h]  introduced earlier may 
be represented in the operator formulation by 

where 

W[h]  = log(~2-I Texp ( f r d t  s lt2 § ) (3.57) 

s = s + h(t) .  ~ (3.581 

No time dependence is required for the coordinate operators because the 
exponential factors automatically introduce the correct Heisenberg picture 
operators after differentiating and setting h to zero. We note then that for 
a static field h in the limit T---, + ~ ,  

exp( W[hr]  ) = (.f2 -I exp( T- s I .-t'2 + ) 

,~ ( f 2 - ] 1 2 + [ h ] ) ( f 2 - [ h ]  If2 + ) x exp(T-2[h] )  (3.59) 

where 2[h]  is the eigenvalue of the "perturbed operator" 

s 1 6 3  (3.60) 

with the largest real part and 12 +[h] ,  f 2 - [ h ]  are the associated right and 
left "ground-state" eigenvectors 

s ]O+[h]) =)~[h] ]f2+[h]) (3.61) 

and 

s l~2-[h]> = 2 * [ h i  l~2 - [h ] )  (3.62) 
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with 

Furthermore, we can see that 

0WEhT] 
Oh,, 

T. x , [h]  +o(T) 

x,,[h] = <f2-[h] l  ~,, Ig2+[h]> 

This can be obtained from the formula 

(3.63) 

(3.64) 

[ oL(h)] OOh exp(s = exp(s ~o( - A d  s --~--7 J (3.66) 

where Ad s denotes the "adjoint superoperator" defined by the com- 
mutator 

(Ad s  = [s O] 

and ~p(z) is the entire function (49) 

(3.67) 

e : - I  1 1 
= l + ~ z + ~ z  2--. (3.68) ~(z)= z 

Since 

<g~-[h]l [s 0 ]  Is =0  (3.69) 

for any operator O, only the first term survives in the expansion of q~ when 
substituted into the first term of formula (3.65). This yields Eq. (3.63). 

where 42 is the spectral gap between the real parts of the "ground-state" 
eigenvalue and the next highest eigenvalue. We also use the well-known 
fact that, for any one-parameter family of operators s depending 
smoothly on a parameter h, 

aW[hT] 
exp( W[ h r] ) - -  

Oh,, 

O +> 
= <(2-1 0-~ exp(T. s I (2 

a 
= ( ( 2 - l ( 2 + [ h ] > ( g 2 - [ h ] l f 2 + > ( f 2 - [ h ] 1 0 - ~  exp(T.s lQ+[h]> 

+ O(e -T'a'~') (3.65) 
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Now let us consider the variational problem. If we incorporate the 
constraints by suitable Lagrange multipliers, then the variational equation 
is just 

o r  

6[-<~e-I [ I~U+>-h. < ~-I s I~U+> +,X ~u-I ~+>] =0 (3.70) 

<6~'--IEh--)~l~'+>+<~--IEh--)<16~'+>=O (3.71) 

In other words, there are infinitely many stationary points of the functional 
V[ ~u+ ~ - ]  subject to the constraints. They consist precisely of pairs 
( ~P~+ [hi,  ~ - [ h ] )  of eigenvectors ofs 

s I ~ [ h ] >  =;t~Eh] I~+[h ]>  (3.72) 

and 

s I~ 's  =2*[h] I~ s  (3.73) 

corresponding to different branches of eigenvalues 2~[h], e = 0, 1, 2 ..... To 
be precise, we should consider the stationary point corresponding to the 
branch with largest real part for each h, that is, the pair of "ground-state" 
eigenvectors (s 12-[h])  introduced above. Applying the left eigen- 
vector to the eigenequation of the right vector and using the constraints 
gives 

<t'2-Eh]l s It2+[h]> +h.x[h] =2[hi 

and thus 

(3.74) 

The first quantity is independent of T, so that we see, taking the limit 
T---, + ~v, that 

-<s'2-[h]l/_7, It2+[h] > = V[x] (3.76) 

as was claimed. 

-<Q-Eh]l/-2 IQ+Eh]> =h. x[h] -AEh] 

-- 1-- r/hTL \ r, c$ W Ihr] } - W[h,] ] -I- o ( 1 ) c S h  

= l F [ x r ]  +o(1) (3.75) 
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We have given only a formal proof of the theorem without a careful 
statement of the conditions, which would certainly involve spectral proper- 
ties of the "Liouville operator" s etc. For deterministic dynamics the 
existence of a spectral gap in (properly speaking) the Perron-Frobenius 
operator has been established only for a few special cases, such as the work 
of Pollicot and Ruelle on Axiom A systems. ~5~ The assumption of a 
spectral gap is probably stronger than required and a fast polynomial 
decay, rather than exponential, should suffice. We just make one remark 
here on the mathematical aspects, which is that trial states ~+ ,  ~u- clearly 
must be taken from different spaces. In fact, ~u + varies over the space L t 
of integrable functions of coordinates, while ~u- varies over the space L ~ 
of bounded functions. Since L ~ is the Banach space dual to L ~, the Dirac 
"bra-ket" notation ( .  [. ) above must be interpreted as the canonical dual 
space action of L ~ vectors on L I vectors. Later we will formulate another, 
more symmetrical version of the result in which both ~u § ~u- vary 
over L'-. 

The theorem can also be generalized in two important ways. First, 
there is an analogous variational characterization of the full, time- 
dependent effective action F [ x ] .  Let us state the result formally as follows. 

T h e o r e m  2. The effective action F [ x ]  for a stationary Markov 
process is the value at the extremum point of the functional 

F [ ~  u+, 7-'- ] = dt(~P-(t),(a,-s ~+(t)) (3.77) 

when that is independently varied over all pairs of time-dependent state 
vectors subject to the constraints for each time t: 

and 

( ~ - ( t ) ,  ~u+(t)) = 1 (3.78) 

( ~ - ( t ) ,  s  = x(t) (3.79) 

and also to the boundary conditions 

lim I~-+(t)) = 1s +-) (3.80) 

We shall not give here the proof of this theorem, because it is essen- 
tially the same as the proof of a corresponding result in quantum field 
theory due to Jackiw and Kerman. c5~ They have shown similarly that the 
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effective action F[~b] of field theory is the stationary point of the functional 

i -t- r 
F [ U  +, ~ - ] =  d t ( U - ( t ) ,  (ihO,-I::I) gJ+(t)) (3.81) 

--'3C 

varied over pairs (U-(t), U+(t)) with constraints 

(~u-(t), U+(t) )  = 1 

and 

(3.82) 

( U - ( t ) ,  ~(r) ~+( t ) )  = ~b(r, t) (3.83) 

Just as the Symanzik theorem is a constrained version of the familiar quan- 
tum variational principle for energy eigenvalues and eigenvectors, the 
Jackiw-Kerman theorem can be seen as a constrained version of Dirac's 1521 
variational formulation of the Schr6dinger equation (a quantum analog of 
Hamilton's principle). According to that principle, the solutions of the 
Schr6dinger equation 

ihO, ~-+(t) = HU+-(t) (3.84) 

are obtained as the stationary points of F [  U +, ~u- ] subject to independent 
variations of the two wavevectors. In addition to providing a basis for time- 
dependent Rayleigh-Ritz calculations, the Jackiw-Kerman-type theorem 
establishes the existence of a Lagrangian functional for the effective action. 

A second generalization of Symanzik's theorem has been made by 
Cornwall et al. (CJT) 1471 to the static effective action for higher order 
statistics. For example, if F[~b, G] is the quantum analog of F[v,  U] 
defined previously, then CJT defined a static version appropriate to discuss 
those second-order statistics in the time-invariant ground state. Their 
definition corresponds to substituting into Fish, G] time-invariant versions 
~b(r) and G(r, t - t'; r', 0), with this G then eliminated in terms of the equal- 
time correlation G(r , r ' )=G(r ,  0;r ' ,0)  in a way discussed in detail in 
ref. 47. After this, the result was divided by the length of the total time 
interval T and the limit T--* +or taken. Then, CJT showed that the 
resulting quantity V[q~, G] is also given by the following variational 
prescription: 

V[~, G] = ( V', ~qu) (3.85) 

at the minimum point subject to constraints 

( ~ ,  U ) = I ,  ( U, r U) =~b(r) (3.86) 
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as before and also 

( ~, ~(r) ~(r ' )  ~ )  = ~b(r) ~(r') + G(r, r') (3.87) 

This is the straightforward generalization of Symanzik's original result. It 
can also be generalized to MSR field theory in a way which should be now 
obvious. We will refrain here from giving the precise statement and instead 
turn to the practical implementation of the results. 

3.4. Formulation of Rayleigh-Ritz Variational Methods 

We will just outline here a simple variational method of Rayleigh-Ritz 
type to approximate the effective action and thereby the ensemble means. 
To initiate the method a trial weight must be chosen, 

w(x) >~0, I d x  w(x)= 1 (3.88) 

as a plausible a priori guess for the density p(x) of stationary measure. This 
weight will contain a number of parameters which can be optimized by 
means of the variational principle in Theorem I. The most straightforward 
implementation uses expansions in orthogonal polynomials with respect to 
the trial weight, 

f P,,(x) P,,(x) w(x) = ...... dx (3.89) 

which are assumed to form a complete set in the weighted LZ-space 
associated with w. General convergence properties of these polynomials are 
discussed by Kraichnan in ref. 53 and Section 2 of ref. 10. In the present 
application, the pair of state vectors to be varied are expanded to some 
finite order N as 

N - - I  

~+ = w .  ~ c,+,P, (3.90) 

and 

N - - I  

~ -  = ~, c,TP,, (3.91) 
t t = O  

Then, incorporating constraints by Lagrange multipliers, the variational 
equation becomes 

~ ~ .-  + ~ , c , , ( L  ..... + h . X , , , , ) - 2  ~" c,7c = 0  (3.92) 
t l , I H  = 0 n ~ 0 
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where for all 1l, m = 0, 1, 2 .... 

L,,., = (P, , ,  s X,,,,, = ( P . ,  ?7((wP,,,)) (3.93) 

The variation may be instituted in two stages. Varying first with respect to 
the expansion coefficients c +, c - ,  the N-rank eigenvalue equations are 
obtained 

N - - l  

' + = 2 c ,  + ( 3 . 9 4  ) ~" (L,,,,, + h �9 X,,,,) c,,, 
/ l l ~ O  

for 17 = 0, 1 ..... N- -  1, and 

N - - l  

(L,,,,, + h" X,,,,) c,7 = 2c m (3.95) 
n=O 

for m = 0, 1 ..... N - 1 .  Then calculate, for each h, the eigenvalue of largest 
real part and the associated eigenvectors. With x fixed, the value of h is 
determined, yielding values 2^,(x), c~(x).  The intermediate approximation 
of rank N to the effective potential V^,(x) is 

A t -  l 

V N ( X )  : - -  2 CN, n ( x )  C/~,m(X) L ..... ( 3 . 9 6 )  
11, t t l  ~ 0 

However, this potential may next be optimized with respect to the remaining 
parameters in the weight function itself, giving the final approximation. 

A natural way to implement this procedure in calculating mean tur- 
bulent velocity profiles would be to make a Gaussian ansatz for the velocity 
fluctuations. The mean velocities in the Gaussian trial weight would be 
taken as the variational parameters, whereas the velocity covariance could 
be fixed by hypothesis. The covariance could be determined, for example, 
from a model energy spectrum which is k -5/3 in the inertial range. In this 
way, the physics of the K41 theory could be incorporated into the trial 
state. The orthogonal polynomials with such a Gaussian trial weight are 
just appropriate multidimensional Hermite polynomials, or polynomials 
"Wick-ordered" with respect to the model covariance. The procedure out- 
lined above would produce a set of variational equations for the mean 
velocity field at every stage of expansion of state vectors into Hermite poly- 
nomials up to the Nth  order. This scheme is essentially a first-order closure 
method for mean quantities by postulating second-order statistics, but with 
the advantage that it may be systematically improved by increasing N. 
Alternatively, second-order closures could be implemented variationally as 
well in which the entire velocity covariance (or some partial second-order 
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statistics such as a local value of the Kolmogorov constant, or the local 
turbulence intensity, etc.) would be allowed to range over some trial set 
and then varied to optimize the guess. Clearly, similar methods could also 
be used in time-dependent problems, such as turbulence growth under a 
mean constant shear, or freely decaying turbulence, etc., based upon the 
variational characterization of the full time-dependent effective action. 

We do not present any such realistic applications at this point. We 
only examine here a couple of very simple, exactly soluble stochastic 
models, in order to allow easy comparison of the variational method with 
reality. First, let us consider the standard Ornstein-Uhlenbeck process ~4s~ 
associated with the linear Langevin equation 

O,x = - y ( x  - Xo) + x//-D II (3.97) 

with ( q ( t )  q ( t ' ) )  = 2 6 ( t -  t'), and Fokker-Planck operator 

O 02 
s = 7 ~x  ( ( x -  Xo).  ) + D Ox---5_ (3.98) 

As is well known, the stationary density is just a Gaussian 

p ( x )  = (2ha 2) -i/2 exp[ - ( x  - Xo)2/2a "- ] (3.99) 

with a-" = D/y. In particular, the mean position is ,s = Xo. However, suppose 
we ignore this fact and instead use a reasonable guess of the second-order 
statistics to try to obtain the mean value variationally. A natural choice of 
trial weight in this case is also Gaussian 

w(x  ) = ( 2ha  2) - 1/2 exp [ -- ( x  -- a ) 2/2a2 ] (3.100) 

with arbitrary center a. Furthermore, let us make the simple ansatz that 

tP+(x) = w(x). c~- (3.101) 

and 

7 J - ( x )  = 1 + c ~ - ( x - - a )  (3.102) 

Thus, we use a "mixed-order" Hermite expansion in which the series for 
~v+ is taken only to zeroth order, but that for ~ -  is carried to first order. 
It is then easy to calculate that 

( 7'-, s  = -y(a-Xo).  cFc~ 

( ~ - ,  ~'+) =c~ 

( ~ - , 2 ~ + ) = a ' c ~  +a-'c~ Co 

(3.103) 

(3.104) 

(3.105) 
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Imposing the constraints ( ~g-, ~u+) = 1 and ( ~ - ,  ~ + )  = x, it is easy 
to determine that 

x - a  

c~ = 1, c~- - ~2 (3.106) 

so that 

))2 
( ~e-, s ) = _ - ~  (a - Xo ) ( X -  a) (3.107) 

Taking V(x) = - (  ~v-  s  and varying with respect to a, we obtain the 
value a = (x + Xo)/2. Substituting this stationary point value, we obtain the 
final estimate: 

),2 
Gpprox(X) = ~-~ (X--Xo)- (3.108) 

Clearly, the minimum is just Xo, so that the method has produced the 
correct mean value. Of course, this example is very simple and getting 
the exact mean value at first try is not expected in general. Notice that the 
same approximation may be obtained from the "classical" action for the 
process, 

FoM[X] --4D -J-~_ dt [2 + y(x -Xo) (3.109) 

i.e., the Onsager-Machlup action. For a general diffusion process this is 
only the exact effective action in the zero-noise limit D ~ 0, and otherwise 
it will be just a "leading" term in a diagrammatic loop expansion. It is 
therefore similar to the "Har t ree-Fock approximation" used in ref. 47. 
However, since 

FoM[XT] ~,2 
T 4D 

(X-Xo)  2 (3.110) 

identically at each finite T, the previous result for V is recovered. 
It may be worthwhile giving just one more simple example, to see 

whether the method can succeed when the exact statistics are non-Gaussian. 
To that end, we take an exactly soluble one-dimensional gradient dynamics 

O,x = -q~'(x) + v/D q (3.111 ) 
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with potential 

2 
~o(x) = ~ (x - Xo) 4 (3.112) 

As is well known, the Fokker-Planck operator is now 

L 2 0 0 2 
= 6 ~ x  ( (x -x~  ") + D Ox 2 (3.113) 

and the stationary density is just given by 

(x-.,-o/4] 
p(x) oc exp ~ ~ J (3.114) 

Although the fluctuations are non-Gaussian, the mean is still given simply 
as ,~--Xo. Let us use the same Gaussian trial guess as above for w and the 
same ansatz for ~P+, ~P- as in Eqs. (3.101) and (3.102). Then Eqs. (3.104) 
and (3.105) are unchanged, while 

( , , 1  ) 
- - ( ~ - , s  (a--xo) .~a-+-~(a--xo)  3 C~C~ 

2 /  1 ,  1 
=---~(a--x~ a-+ 6 J (x--a) (3.115) 

imposing the constraints. The approximate effective potential V can be 
obtained by substituting the value a at the stationary point, which is 
determined by the variational equation 3V,,(x)/Oa =0,  or 

i "~ [~_a-+~(a-xo)2](x-a)  [ ( a - x o )  I " _ = �9 ~_a- + ~ ( a  - - X o )  3 ]  ( 3 . 1 1 6 )  

It is possible to solve this cubic polynomial equation for a, but it is easier 
to determine the approximate mean value without doing so explicitly. In 
fact, using Eq. (3.116), it is straightforward to see that 

V'Ppr~176 (3.117) 

Thus, the minimum V,r, oro~ = 0 is achieved if and only if x = a. Substituting 
back into the cubic equation (3.116), we find that 

1 (a_Xo)3 q cr 2 
g ~ - ( a - - x o ) = 0  (3.118) 
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at the minimum. This equation has only one real-valued solution, a = Xo. 
Hence, we conclude that 

~=Xo (3.119) 

which is again the exact value. Notice that the variance a 2 of the Gaussian 
trial state never needed to be specified in this argument. In fact, the 
Gaussian ansatz gives a rather poor representation of the fluctuations for 
any choice of a 2, but all choices lead here to the same mean value. 

Let us make a few remarks on the convergence properties of the 
systematic expansion procedure described previously in the limit as 
N--* +oo. Although we give here no rigorous proofs, it is clear that it 
should give a convergent scheme if some reasonable properties are satisfied 
by the dynamics and the trial weight. A natural condition is that the 
operator s defined by the formal similarity transformation 

1 s163 (3.120) 

be a (generally unbounded) operator o n  L 2 such that 

{x /~P, , :  n =0 ,  1, 2,...} c dom(s n dom(s (3.121) 

and that the perturbed operators s  have a complete set of 
biorthogonal left and right eigenvectors T , ~ [ h ] ,  e = 0 ,  1,2 ..... in L 2. 
Notice that if we take s [h]  to be the "ground-state" vectors (ct = 0) with 
largest real part, then s =p/v/~v and ~ ,7 [0 ]  = v/w. 9 In particular, 
the first implies the usual condition for orthogonal expansion methods: 

f dx P2( x ~ < o o  (3.122) 

The importance of the similarity transformation is that it removes the 
asymmetry of the problem, replacing the two different spaces of trial 
vectors L ~ and L:'- by the single Hilbert space L 2. The variational method 
may then be r~formulated equivalently in terms of the functional 

v,,[ ~, +, ~u-]_- _ ( ~ , - ,  s (3.123) 

9 It follows from this that, for w=p, the two ground states at h=0 of the transformed 
operator coincide: "Q/~ = x/~. However, this is probably not helpful, since one must expect 
the left and right ground states to split under the perturbation h-X. 
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varied subject to the same constraints as before, but now with both 
~u• e L 2. It is clear that the Rayleigh-Ritz method outlined above is equiv- 
alent to one for the present principle if the trial states are taken as 

N - !  

7~+-(x)=.v/~, ~ c,+P,,(x) (3.124) 
n=O 

This reformulation is necessary to justify the procedure, since the trial 
states in Eqs. (3.90) and (3.91) do not belong to the proper spaces L 1, L ~. 
It also allows some proofs of convergence of the Nth-order approximation 
VN pointwise to the true effective potential V, under suitable hypotheses. 
Note that we consider here convergence with a fixed choice of trial weight 
w, although one would expect convergence to be improved by optimizing 
the weight at each stage. 

Let us close this section by comparing the variational method we have 
proposed with some previous ones. Kraichnan (see Section 4.3 of ref. 54; 
also ref. 55) and Qian ~56~ have devised variational schemes which involve 
satisfying equations of motion in mean-square sense. Instead, we use only 
the linear "Liouville operator" of the dynamics. More essentially, the 
scheme advocated by Kraichnan was intended to approximate the entire 
statistical distribution, whereas the principle discussed here is constructed 
to obtain just mean values or other low-order statistics. The calculations of 
Qian 15m do show that the 5/3-spectrum and a reasonable value of the 
Kolmogorov constant can be obtained by a single-time variational calcula- 
tion. There may be a connection of our ideas with those of CastaingJ 57~ 
The action principle we have established here differs from the "optimum 
theory" of Busse ~Ss~ in that it characterizes variationally the true ensemble 
averages. Instead, Busse derived variational bounds for turbulent transport 
properties and he proposed that the extremalizing vector fields achieving 
these bounds will be "similar" to the ensemble-averaged turbulent fields. 
However, in general, they will be distinct. Detailed comparison of the vir- 
tues and failings of these different principles must await future work. 

4. STOCHASTIC LES MODELS AND THEIR APPLICATIONS 

4.1. A Subgrid Random Coupling Model and 
Comparison with Other Models 

A number of stochastic LES models have already been proposed and 
implemented for turbulence simulation? 5-81 In principle, they might be 
regarded as simplified approximations of the exact SLE derived here. 
However, there are certain differences. 
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The model of Chasnov ~6~ was derived by applying the sharp Fourier 
cutoff filter to the momentum equation of the "generalized Langevin 
equation" model '~ for the E D Q N M  closure equations. As we discussed 
elsewhere, ~'3~. the use of the sharp Fourier filter is unwise and introduces 
nonuniversal features in the "subgrid stresses" which are due to large-scale 
convection. A more basic difficulty with constructing LES models in this 
way was noted a long time ago by Kraichnan and Herring (ref. 59, p. 162). 
The self-consistent Langevin models were introduced to establish 
realizability for the closures and, while they are expected to approximate 
well the low-order statistics'  of the turbulence dynamics (e.g., mean energy 
spectra and transfer), they cannot be expected to provide faithful 
approximations for individual realizations. In particular, Herring and 
Kraichnan noted that the models "scramble the dynamics in a way that 
makes it implausible that the model could reproduce the build-up of com- 
plicated correlations among large numbers of wavevector modes which 
occurs in solutions of Navier-Stokes equations." This is a particularly 
serious concern if the LES model is to be used to study the coherent struc- 
tures which evolve spontaneously in the turbulent flow, since production of 
these structures will be inhibited and their lifetimes reduced. 

Another type of model was introduced by Leith 15~ and applied in a 
somewhat modified form to simulation of a turbulent boundary layer by 
Mason and Thomson. 17~ Those authors modeled the random accelerations 
given in our Eq. (2.59) by an application of the same energy-balance ideas 
used in deriving the Smagorinsky model and by Kolmogorov-style dimen- 
sional reasoning. More precisely, a heuristic dimensional argument was 
given that the rate of energy backscatter from turbulent eddies of size I e to 
the resolved scale at the filter length !r is of the form CB(IJ ! r )  s ~. Here e is 
the total value of energy dissipation, which was estimated by assuming 
local energy balance of the subgrid flux (from a Smagorinsky stress model) 
with dissipation and backscatter: 

v S 2 = e + C B  e (4.1) 

The backscatter was then implemented in the scheme by generating a field 
of independent random vectors ~b = (~b,., ~b,., ~b:) of zero mean at each point 
of the spacetime grid. This random vector field was used to generate a 

~o Properly speaking, these equations differ in type from what we have called "generalized 
Langevin equations" because they have the property that noise and damping terms are 
determined from the past statistics of an infinite ensemble of realizations of the dynamics. 
A better term to describe this type of stochastic equation would be "self-consistent Langevin 
equation." 
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"vector potential" whose curl gave the random acceleration. The random 
vector ~b was filtered on the scale !: to obtain the components of the poten- 
tial and rescaled appropriately to give the estimated contribution to the 
backscatter rate in root mean square sense. Compared with the exact equa- 
tion (2.59), this model acceleration field has one clearly unnatural feature, 
that it is given as the curl of a vector A = V x q~ rather than the divergence 
of a symmetric stress tensor A = - V -  ~" plus the associated contribution to 
pressure. Mason and Thomson argued that only the divergence-free part of 
the random acceleration needed to be considered. However, the random 
backscatter contribution to pressure could make a important contribution, 
e.g., to isotropization of the small scales, and their procedure makes the 
pressure term unrealistically a deterministic quantity (i.e., a function just of 
resolved fields). Another difference compared to the exact expression (2.59) 
is that the model acceleration in this scheme is completely uncorrelated in 
space-time, whereas the exact expression allows long-range correlations in 
space and memory of past history in time. Note that a heuristic "multi- 
fractal model" suggests the presence of such correlation effects in energy 
dissipation) 6~ 

A model which contains some of these effects can be constructed by 
applying Kraichnan's "random coupling" method 136) in conjunction with 
the exact stochastic filtering scheme.~l We shall not give full details here, 
but just outline some of the ideas in the simple context of coupled random 
oscillators. The dynamical variables are now complex numbers e, z' 
governed by 

z(t) + ibm(t) + icz'(t) = f ( t )  (4.2) 

and 

-'(t) + ic*5(t) + ib'z'(t) = f ' ( t )  (4.3) 

Here b', b are real-valued random frequencies with independent distribu- 
tions of zero means and variances B =  ((/~)2), B ' =  ( (b ' )2 ) ;  c is a random 
complex coupling coefficient with mean ( c )  and variance C =  
( I c l 2 ) - I ( c ) 1 2 ;  and f , f '  are external random forces with means 
( . f ) ,  ( f ' )  and covariances 

( ( f ( t ) - ( f ( t ) ) ) ( f ( t ' ) - ( f ( t ' ) ) ) * )  =F( t ,  t') 
(4.4) 

( ( f ' ( t ) - -  ( f ' ( t )  ) ) ( f ' ( t ' ) -  ( f ' ( t ' )  ) )*) = F'(t, t') 

J t However, these models will have the same deficiency as ref. 6 in omitting coherent subgrid 
structures. 
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This system can be considered a caricature of a passive scalar, in which the 
z variables mimic the scalar concentration, b and c mimic the convecting 
velocity with prescribed statistics, and the f ' s  represent scalar sources. 
A pair of oscillators are considered to represent the devision into "large- 
scale" modes Z and "small-scale" modes z'. Because the dynamics is linear, 
it is trivial to implement the stochastic filtering with 

f' Z'[t; ~_, f ' ]  = ds e-ib'~'-*l[ --ic*.5(S) +if(S)]  (4.5) 

Substituted back into the "LE," Eq. (4.2), this yields the exact stochastic 
equation for ~-. Note that in this example, which is clearly an "integrable" 
case, the exact SLE dynamics becomes deterministic as B', (7, and F'  all 
vanish. In that case, the filtering just produces the new term 

/~[ t, .~] = - I ( c ) l  2 f,'o ds -(s). 5(t) (4.6) 

in the effective dynamics. 
To make a closure for the general case, we may apply Kraichnan's 

random coupling scheme. We introduce, as in ref. 36, N independent copies 
-:t,,], zt,,l of the above system, n = 0, 1 ..... N -  1, and rewrite them coupled 
together in "collective variables" introduced by a discrete Z(N)-Fourier 
transform: 

1 N - 1  1 
~= J - -  e2ni~az/N.7 ' ( 4 . 7 )  "~  = N / / ~  n 0 e2nic~ ' - ~ - -  N / / ' ~  [ n ]  

Into the coupled equation we then introduce random interaction phases 
O~,/j.;., 0'~./~.;, but only into the terms involving the SS modes (alone or coupled 
to the LS modes). The dynamics of the LS modes is left unaltered. For 
obvious reasons, we refer to this new system as the "subgrid random 
coupling model." The result upon transferring back to the "individual 
variables" ~-E,], zt,o and taking N---, + ~  is that the individuals become 
again uncorrelated in the limit and that each has LS modes now governed 
by a stochastic effective dynamics of the form 

"O,Y(t) + ib,Y(t) + F' ds .g(t, s) 5(s) = f ( t )  + ~(t) (4.8) 
" t o 

in which ~f is a kernel representing additional damping and q~ is a new ran- 
dom force with mean (~b(t)) and covariance 

((~(t)  - (~( t ) ) ) (~( t ' )  - (q~(t ')))*) = ~(t,  t') (4.9) 

822/83/5-6-14 
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These additional terms represent the effects of the eliminated SS modes and 
can be characterized by the statistics of those modes. Precisely, 

Z ( t , s ) = C . G ' ( t , s )  (4.10) 

qS(t, s) = C. (Z'(t, s) + ( z ' ( t ) ) ( z ' ( s ) )  *) (4.11) 

( ~( t) ) = - i (  c)  ( z'( t) ) (4.12) 

In addition to the mean ( z ' ( t ) )  these involve 

G'(t, s)= ?/ 6:'(t) \ (4.]3) 
\,~f '(s)/ 

which is the average response function of the SS modes, and 

Z'( t, s )= ( (z'( t) - ( z'( t) ) ) ( z ' ( s ) -  ( z'(s) ) )* ) (4.14) 

which is the SS correlation function. Note that the new terms in the SLE 
dynamics (4.8) are precisely those appearing at the one-loop level in the 
line-reverted expansion (corresponding to the first and second diagrams in 
Section 2.3). All other contributions from the SS modes are eliminated by 
averaging over the random phases in the coupling interactions in the 
large-N limit. 

The SS statistics is then determined by a set of self-consistent equa- 
tions, which we call "subgrid DIA equations." They involve the SS statistics 
as well as the corresponding statistical quantities (5( t ) ) ,  (7(t, s), Z(t, s) of 
the LS modes. Precisely, the equations are 

O,(z'(t))  + i ( c ) *  (5( t ) )  +f , 'odsZ ' ( t , s ) (z ' ( s ) )  = ( i f ( t ) )  (4.15) 

O , G ' ( t , t ' ) + f ~ , d s Z ' ( t , s ) G ' ( s , t ' ) = 6 ( t - t  ') (4.16) 

o,z'l,, ,'1 + I,'o ds z'ls, ,'1 

=f,',i ds[F ' ( t , s )+qS ' ( t , s , ]  G'(t ' ,s '* (4.17, 

In these equations the new quantities are 

Z'(t, s) = B'. G'(t, s) + C. G(t, s) (4.18) 
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and 

qs'(t, s) = B' .  [Z'( t ,  s) + ( z ' ( t ) ) ( z ' ( s ) )  *] + C- [Z(t,  s) + ( - ( t ) )  ( - ( s ) )*  ] 

(4.19) 

These subgrid DIA equations may be obtained from a set of exact 
Schwinger-Dyson integral equations for the SS dynamics "conditioned" on 
a fixed past history of the LS modes. Because of averaging over random 
phases and the limit N-+ +oo, they depend only upon the low-order 
statistics of the LS modes and only the one-loop terms in the "self-energies" 
Z' and r survive. It can be verified that the combined system of SLE 
dynamics and subgrid DIA equations satisfies necessary consistency 
properties, such as conservation in the mean 

0,( I_~(t)l -" ) +O,[Z'( t ,  t )+  I(z ' ( t ) )I  -~] --0 (4.20) 

for ( f ) ,  F =  0, which follow from the existence of a model representation. 
This approximation to the exact SLE dynamics clearly does retain 

some memory effects of the SS modes depending upon the past history of 
the mean statistics of the LS modes. A similar "subgrid random coupling 
model" can be constructed for the nonlinear Navier-Stokes equation, but 
it is far more complicated and will not be written here in detail. In this case 
there is a serious defect of the DIA approximation to the exact SLE equa- 
tions, which is the failure of random Ga61ei #wariance (RGI). This problem 
is exactly the same as that in ordinary DIA, discussed at length by 
Kraichnan. <2"m'38~ The failure of RGI gives rise to qualitatively bad 
approximations to the damping, noise, etc., calculated from the DIA equa- 
tions, or, more generally, from any truncation of the perturbation series in 
the "line-reverted" form. These defects can be cured by using Lagrangian 
reformulations of the line-reverted expansionsJ 3s~ but only at the price of 
losing the model representation. Probably the exact "subgrid DIA" equa- 
tions for Navier-Stokes are too complicated anyway to be of practical use 
in simulations and further approximations must be made along the lines 
leading to EDQNM-type closures. 

There is one feature of the "subgrid DIA" equations for the coupled 
random oscillator system which should be mentioned. In the limit as B', C, 
F' ~ 0 these equations degenerate, so that G'( t, t') --, O( t -  t'), Z'( t, t') --+ O, 
and the mean obeys the simple equation 

O,(z ' ( t ) )  + i ( c ) *  (5( t ) )  = ( f ' ( t ) )  (4.21) 

These results correctly account for the fact that the exact SS dynamics 
becomes deterministic in that limit. Likewise, when C ~ 0, the covariance 
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qS ~ 0 and the force ~(t) generated by the SS modes becomes deterministic. 
Therefore, no spurious stochasticity is generated in the LS dynamics by the 
DIA approximation. However, this is possibly an artefact of the linearity of 
the problem. In the case of nonlinear dynamics, there is no obvious distinc- 
tion between the subgrid DIA equations for an "integrable" case such as 
Burgers and a "chaotic" case such as Kuramoto-Shivashinsky in the limit 
eo~ 0, where external noise is removed. However, it may be that a 
qualitative distinction emerges from their detailed solution. The issue may 
be formulated as follows: with small randomness ~eo in the initial data of 
the SS modes, the KS equation should generate an O(1) effective noise for 
the LS modes in a time proportional to a local "mixing time" of the 
dynamics, with a coefficient which is only weakly dependent on eo (e.g., 
logarithmically). However, the Burgers equation will presumably generate 
an O(1) effective noise for the LS modes from randomness ~Co in the 
initial data of the SS modes in a time which goes rapidly to infinity in the 
limit as eo~0.  It would be interesting to know whether the DIA 
approximation to the exact SLE equations is sophisticated enough to make 
this distinction between "chaotic" and "integrable" dynamics. 

4.2. Atmospheric Predictability and Complex Flows 

Let us conclude with a brief mention of some situations of physical 
interest where "turbulent eddy noise" may play a significant role. It was 
already argued by Mason and Thomson ~7~ that stochastic backscatter is 
necessary to correct errors in the mean  velocity profiles of the turbulent 
boundary layer produced by a deterministic LES model of Smagorinsky 
type. Similarly, the importance of turbulent fluctuations generally in deter- 
mining the means led us to believe that the least-action principle may have 
some use in calculating those mean statistics. Mason and Thomson also 
found in their study significant qualitative differences between individual 
realizations in LES with and without stochastic backscatter. For example, 
with backscatter the velocity fields were much 'rougher" or "irregular." 
Thus, eddy noise may also have important effects on the character of large- 
scale structures that evolve in the flow. 

Another obvious area of interest is the role of eddy noise in the predic- 
tability problem for wheather forecasting and climate change. An early 
study of this issue within the TFM closure was made by Leith and 
Kraichnan. ~6~1 It is clear that deterministic LES models of atmospheric flow 
make a spurious prediction that LS velocities are completely predictable 
--in principle--given exact information on just the initial LS fields. 
A stochastic LES model with eddy noise from the unresolved SS fields 
corrects this obvious defect. It is of interest how such effects of turbulence 
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noise interact with the "deterministic chaos" view on the predictability 
problemJ 62~ Since even deterministic LES models show generally "sensitive 
dependence" to initial perturbations, adding eddy noise may not produce 
any qualitative differences. However, a quantitative difference, even by a 
factor of two or so, would have significant impact on forecasting ability. 
These issues are currently being investigated in the meteorological 
literature: see ref. 63 for a review. Improved physical understanding of the 
characteristics of turbulence noise would be valuable for this inquiry. 

Note.  Since this paper was submitted, two works closely related to 
ours have come to our attention. Chow and Hwa 1641 have more systemati- 
cally derived noisy Burgers from the KS equation by means of a "stochastic 
filtering" procedure similar to the one developed more generally here. The 
separation of scales in that problem permits a multiple-scale expansion to 
be employed. In the language of turbulence modeling, their filtering method 
corresponds to a "second-order closure." Also, a work by Jarzynski ~65~ 
obtains a similar effective Langevin dynamics for a few-degrees-of-freedom 
Hamiltonian system, corresponding to a "slow" particle coupled to a "fast" 
chaotic dynamics. In this context, a fluctuation-dissipation relation is 
derived between friction force and random noise. 

A P P E N D I X  A. THE K R A I C H N A N - W Y L D  P E R T U R B A T I O N  
THEORY 

The perturbation expansion for the Navier-Stokes equation (2.33) can 
be developed by writing an exact integral solution as 

v(rt) = vl~ 

f' f + dt' dUr'G~~ r ' t ' ) P ( V , , ) ( v ( r ' t ' ) . V r , ) v ( r ' t  ') (A.1) 

where G <~ is the bare response function 

G~~ r't ') = ( 0 , -  vA) - l  (rt, r 't ') (A.2) 

and v ~~ is the solution of the linearized problem 

f' f v~~ = dt' d'lr ' Gl~ r't ') ffr ' t ')  (A.3) 



1010 Eyink 

An exact integral solution can also be obtained for the full response tensor, 

6v i ( r t )  
(~e(rt, r 't ') -- 6fj(r't'----~) (A.4) 

by taking the functional derivative of both sides of Eq, (A.1) with respect 
to f(r't'), yielding 

Gij(rt ,  r't ') ~0~ = G O. (rt, r't ') 

f' f + dt"  ddr " G~~ r"t") Pu(Vr,,) 

x L~'k/~r~ ir,,t,,, r't')(V,,,)k v/(r"t") 

^ I t  I t  + (v(r't')" V,,,) Gij(r  t , r ' t ' )]  (A.5) 

Now, iterating the two expressions (A.1) and (A.5), one obtains expansions 
of the exact v and G as power series in v I~ and G ~~ One may substitute 
the series into the ensemble averages for the covariance 

1 ! t Ua(rt ,  r ' t ' )=  ( v i ( r t )  v j ( r ' t ' ) )  - ( v i ( r t ) ) ( t j ( r  t ) )  (A.6) 

average response tensor 

Go.(rt, r ' t ' )=  ((~,j(rt, r ' t ' ) )  (A.7) 

and mean field V(rt) [Eq. (2.36)]. In the case of Gaussian force f, the 
averages over products of the vl~ may be resolved into products of Vt~ 
and bare correlation functions 

to) rt r't' U U ( , ) =  < v',.~ v~~ - <v'i~176 (A.8) 

by the use of Wick's theorem. In this way, series expansions for ~, U, and 
G may be developed in terms of the corresponding bare quantities. 

A graphical interpretation of this iteration procedure was introduced 
in refs. 35 and 36, in which the basic elements are the "propagators," which 
are the bare response and correlation function, along with the mean field 
and the bare interaction vertex 

Y3: ~k( rt, r't', r"t") = --�89 + P;~(V,)(V,)j) 

x 6d(r --r ' )  6( t  -- t ' )  6d(r -- r") 6( t  --  t")  (A.9) 
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Diagrammatically one represents the bare field as 

v~ ~ - Fig. 6 

the average bare response function as 

G~ ~ = Fig. 7 

and the bare vertex as 

(A.IO) 

(A.11) 

and 

t~{ol_ Fig. 9 (A.13) i 

u(.Ol = Fig. 10 (A.14) 
U 

The averaging elimination procedure performed on all pairs of trees (joined 
by at least one U ~~ gives the series for U. Finally, the series for G is 
obtained if one first replaces one "top branch" in single trees by a G ~~ and 
then performs the averaging elimination of the vl~ A convenient com- 
pendium of some of the topological properties of graphs in the resulting 
diagrammatic perturbation series is contained in ref. 37. 

The same perturbation expansion can be obtained as a Feynman 
diagram expansion for the MSR field theory. It is convenient to introduce 
a doublet field ~ , ,  a = __+, following ref. 11, 

\r \ir (A.15) 

Then the path-integral expression for the generating functional Z [q ]  = 
Z[ --it/+, v/_]: q =(t'/+, v/_) T, is just 

Z[,I]  = f  @~ exp - F~~ #(1) O(2/ 

1 ] 
+ y , ( 1 ) ~ ( 1 ) + ~ y 3 ( 1 2 3 ) ~ ( 1 ) ~ ( 2 ) ~ ( 3 ) + ~ l ( 1 ) ~ ( l )  . (A.16) 

In terms of these graphical expressions, one generates the series for v by 
first writing down all tree graphs whose "limbs" are given by Gl~ 
and whose "top branches" are given by v~~ To form the series for 
one eliminates all the v~~ in the single trees for v, either by replacing 
them singly by ~c~ or joining them in pairs to yield U~~ which are 
represented as 

Y3:/ jk  -= Fig. 8 (A.12) 
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Fig. 6. 

- - ~ x / ~  j 

Fig. 7. 

J 

k 

Fig. 8. 

Fig. 9. 

Fig. 10. 
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where we have employed a compact notation (a l i l r  I t~)= 1 along with a 
summation convention on repeated indices. Here, yl = (0, ~)T. Now, F~ ~ is 
the "wave operator" given by the 2 x 2 matrix in doublet space 

tO) 
F 2 : i j ( r t  , r't') 

( o 

( 0  t - -  V 0 A r )  6 i j 6 d ( r  - - r ' )  d( t - t ' )  

- - (O ,  "Jr- 110 ~ r )  Oi j •d (  r - -  r') 6 ( t  - t ') '~ 

- F ~ ( r t ,  r't ') 

(A.17) 

and ),3(123) is a completely symmetric vertex which is equal to the Y3 
already defined in Eq.(A.9) when the doublet indices are ( - + + ) ,  
( + -  + ), or ( +  + -  ), and zero otherwise. Of course, it must be the case 

F,_ =(G_, ) where is the - - and  it is easy to check directly--that ~ol ~o~ - l ,  G ~  
"bare" matrix correlation function ~o~ - / q ~  q s , > _ ( ~ o ~  ~o~ q~o~>< co~ r ), v2~ 0"o" -- N 
which has three nonvanishing entries 

to) r f i t ' ))  to~ �9 Ui j  (rt, r't ') G o . (rt, 
G 2 ( t r t ,  j r ' t ' ) =  C,l~ r't ') 0 

- - i f  �9 , 

(A.18) 

with (~.~ r ' t ' )=  GJ~ ', rt) a "(bare" anti-response function" and with 
(01 (0) G and U already defined in Eqs. (A.3) and (A.8). 

APPENDIX B. PROOF OF THE LIOUVILLE PROPERTY 

It is helpful to begin by giving a proof of Lee's result ~ that the 
Liouville theorem is valid for the cutoff Euler dynamics associated with the 
"dynamical field" 

with 

KE(x) = --P(Vx) V~" rE(x) (B.1) 

17E(x) = V(X) u (B.2) 

All of the velocity fields are now defined with a high-wavenumber cutoff 

v(x, t) = ~ ~(k, t )  e ik 'X (B.3) 
k ~ .,'?" 

associated with some bounded domain of wavevectors ~,r, e.g., the sphere 
Y =  {k: [k[ <K} or the square box , X =  {k: maxd=~ Ikil <K}.  Note that 
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P(V) includes the projection back onto the .X/'-modes. In our proof it is 
helpful to use the "cutoff delta function" 

~d(x)= 2 eik'x (B.4) 
k ~ .S'" 

which was discussed in Section 2 of ref. 66. As far as integration with 
respect to other cutoff functions is concerned, it has the same properties as 
the ordinary delta function. Our proof will make use of symmetry proper- 
ties which are assumed to hold for the cutoff domain .g#, particularly, 

J," = - J r  ( B . 5 )  

and invariance under a discrete rotation group mapping any coordinate 
direction into another. Of course, these are satisfied by either of the explicit 
choices above, as well as other reasonable choices. 

It is then easy to calculate, using incompressibility, that 

O,., &E(x)6vk(y) = '-"'-C~ '~'~+')(x--y)[6,kVj(X)+,~jkVAX)] +6'~+'(x-y)a.,.,.vj(x) 
(B.6) 

Then, again using incompressibility, we obtain 

(6~KE(x)'~ = 2(d-- 1 )(v(x) �9 Vx) 6 d+ t(x --3') t r \  6v(y) / 

+ P(Vx) 6 a+ '(x - y )  : (VxV)(X) (B.7) 

Note that the factor ( d - 1 )  arises from the trace of the solenoidal projec- 
tion. However, it is observed that 

Vx6"(o)= )-" k = 0  (B.8) 
k ~ . . ' r  

by reflection symmetry of the cutoff domain J f  in Fourier space. Likewise, 

P(Vx) 0. 6(0) = C6~ (B.9) 

if the reflection and discrete rotation symmetries hold. This gives finally 
that 

Tr?KE  ?KElxl  k, dv / - - f d d + ' x t r \  cSv(x) / = 0  [] (B.10) 
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It follows immediately from this that a corresponding result holds for 
the coupled LE and SE obtained by filtering the Navier-Stokes equation 

t /'0RE(x)~ (6KE'(A')'~ 
r ~ , ~ ) = t r  \ 6v'(y) / = 0  (B.11) 

Note that the LE and SE equations are regarded as a system for 
autonomous variables ~ and v'. Consider the first case. Since 

/~/E[ x; ~, v'] = f day G ( x -  y )KE[y;  ~ + v'] (B.12) 

it follows that in the equation corresponding to Eq. (B.8), v is replaced 
everywhere by ~ + v' and 6 d* ~(x) is replaced by G(x)6(t): 

t /6RE(x)~ 
= 2 ( d -  1)[(~(x)+ v'(x)) �9 Vx] G ( x - y )  6( t - s )  

+ P(V x) G(x - y )  6(t - s )  : [(Vx~)(x) + (VxV')(x)] (B.13) 

If one assumes that (~ has the necessary symmetries--invariance under 
reflections and at least discrete rotation invariance--then VG(0)= 0 and 
P•(V)G(O)=C.6 U. These facts imply that the first part of Eq.(B.11) 
holds. The demonstration of the second part is the same, simply replacing 
G byH.  

We now show that the Liouville theorem for the SS contribution 
to Keff, 

�9 r( 

follows from a causality argument. In fact, note that in the term 
( 1 )  . .  s . 6Dar [.x, ~]/6~(y) (or in the similar functional derivative of �9 [x, v]) there 

must be a line of response functions leading from the y vertex to the x 
vertex. OtheNvise, starting with the y vertex, one must encounter a closed 
loop of response lines according to our argument in Section 2.2, and the 
graph will vanish. However, this implies that 

6z")k[x; v] ,=., = 6a(x_  y ) Bjkt[y; v] (B.15) 
6v/(y) 
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since the response functions at equal time arguments are spatial delta 
functions. In that case, it follows from Eq. (2.69) in Section 2.2 that 

Dll, rx-. vii &%[x; v]l 

, = . , .  

= -P,/(V.)(V.,)k 5a(x -Y)" BjkI[Y; v] l, =.,. (B.16) 

Therefore, 

D le~.l./[-x; u 
&,j(x) 

Pi/(V)(V)k 5a(O) �9 Bjkt[x; v] 

=0  (B.17) 

by our previous formula, Eq. (B.8), from reflection symmetry. This gives at 
once the Liouville theorem [Eq. (3.80)]. 

This result may seem paradoxical in view of the well-known term in 
the effective dynamics associated with the "eddy viscosity." Such a term has 
the same form as the usual viscous dynamics in Navier-Stokes (from 
molecular viscosity) and apparently violates the Liouville theorem! 
However, it should be clear that this violation results from various 
approximate evaluations of the exact expressions for the eddy damping. In 
fact, the one-loop perturbation diagram for the eddy-damping term--from 
which eddy-viscosity contributions are ordinarily derived--is easily seen to 
satisfy the Liouville theorem according to the argument given here. Note 
that a distinction must be made between "dissipative dynamics," which in 
the current usage of dynamical systems means that without a Liouville 
theorem, and "nonconservative dynamics," designating that for which con- 
servation laws, such as energy conservation, are violated. There is no ques- 
tion that the eddy-damping term violates energy conservation of the LS 
modes and that its principal effect at low wavenumbers is to drain energy 
from those modes. 
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